
AFRL-SN-WP-TR-2004-1019

AUTOMATIC DESIGN AND SYNTHESIS
OF AUTOMATIC TARGET
RECOGNITION (ATR) SYSTEMS USING
LEARNING PARADIGMS

Bir Bhanu, Yingqiang Lin, and Krzysztof Krawiec

University of California
Bourns College of Engineering
Center for Research in Intelligent Systems
Riverside, CA 92521-0425

OCTOBER 2003

Final Report for 23 October 1999 – 22 October 2003

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

SENSORS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS
DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT
IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT
FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES
NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY
RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION
THAT MAY RELATE TO THEM.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASC/PA) AND IS
RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS, IT
WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

Contract Number: F33615-99-C-1440
Contractor: University of California, Riverside

/s/ /s/
__ ___
KENNETH A. GRIER DALE E. NELSON, Ph.D.
Project Engineer Chief, ATR & Fusion Algorithms Branch
ATR & Fusion Algorithms Branch Sensor ATR Technology Division
Sensor ATR Technology Division Sensors Directorate

/s/
__
DAVID W. CHANDLER
Lieutenant Colonel, USAF
Deputy, Sensor ATR Technology Division
Sensors Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document require its return.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2003 Final 10/23/1999 – 10/22/2003
5a. CONTRACT NUMBER

F33615-99-C-1440
5b. GRANT NUMBER

4. TITLE AND SUBTITLE
AUTOMATIC DESIGN AND SYNTHESIS OF AUTOMATIC TARGET
RECOGNITION (ATR) SYSTEMS USING LEARNING PARADIGMS

5c. PROGRAM ELEMENT NUMBER
62204F

5d. PROJECT NUMBER

6095
5e. TASK NUMBER

04

6. AUTHOR(S)

Bir Bhanu, Yingqiang Lin, and Krzysztof Krawiec

5f. WORK UNIT NUMBER

 04
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

University of California
Bourns College of Engineering
Center for Research in Intelligent Systems
Riverside, CA 92521-0425

CRIS-1003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
 ACRONYM(S)

AFRL/SNAT Sensors Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7320

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-SN-WP-TR-2004-1019
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Report contains color.

14. ABSTRACT
This report investigates evolutionary computational techniques such as genetic programming (GP), coevolutionary
genetic programming (CGP), linear genetic programming (LGP) and genetic algorithms (GA) to automate the synthesis
and analysis of object detection and recognition systems. It shows the efficacy of evolutionary computation in
synthesizing effective composite operators and composite features from domain-independent primitive image processing
operations and primitive features for object detection and recognition. Smart crossover, smart mutation and a new fitness
function based on minimum description length (MDL) principle are designed to improve the efficiency of genetic
programming. A new MDL-based fitness function is proposed to improve the genetic algorithm’s performance on
feature selection for object detection and recognition. Results are shown using MSTAR SAR imagery.

15. SUBJECT TERMS
target detection/recognition, synthesis of recognition systems, feature selection, evolutionary computation, genetic
programming, genetic algorithms, linear genetic programming

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 152
 Kenneth A. Grier
19b. TELEPHONE NUMBER (Include Area Code)

(937) 904-9033
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

Automatic Design and Synthesis of ATR Systems Using Learning Paradigms

Table of Contents

Acknowledgements viii

Chapter

1 Introduction 1

2 Learning Composite Features for Object Detection
 Using Genetic Programming 6

 2.1 Motivation 7

 2.2 Related Research 7

 2.3 Technical Approach 8

 2.3.1 Design Considerations 8

 2.3.2 Selection, Crossover and Mutation 10

 2.3.3 Steady-state and Generational Genetic Programming 12

 2.4 Experiments 14

 2.4.1 SAR Images 14

 2.4.2 IR and RGB Images 24

 2.4.3 Comparison with Example Region Selection 28

 2.4.4 Comparison with a Simple ROI Extraction Algorithm 32

 2.5 Summary 34

3 Improving Efficiency of Genetic Programming
 For Object Detection 35

 3.1 Motivation 35

 iii

Automatic Design and Synthesis of ATR Systems Using Learning Paradigms

 3.2 Related Research 37

 3.3 MDL-based Fitness Function 38

 3.4 Technical Approach 40

 3.5 Experiments 44

 3.5.1 Road Extraction 44

 3.5.2 Lake Extraction 49

 3.5.3 River Extraction 50

 3.5.4 Field Extraction 52

 3.5.5 Tank Extraction 53

 3.5.6 Comparison between Normal GP and Smart GP 54

 3.6 Summary 56

4 GA-based Feature Selection for Object Detection 58

 4.1 Motivation 58

 4.2 Related Research 59

 4.3 Technical Approach 61

 4.3.1 Feature Evaluation 61

 4.3.2 Various Criteria for Fitness Function 63

 4.3.2.1 Fitness Function Based on MDL 63

 4.3.2.2 Other Fitness Functions 64

 4.3.3 System Description 65

 4.3.3.1 CFAR Detector 65

 4.3.3.2 Feature Extractor 66

 iv

Automatic Design and Synthesis of ATR Systems Using Learning Paradigms

 4.3.3.3 GAs for Feature Selection 71

 4.4 Experiments 72

 4.4.1 MDL-based Fitness Function 73

 4.4.2 Other Fitness Function 77

 4.4.3 Comparison and Analysis 82

 4.5 Summary 84

5 Learning Composite Features for Object Recognition
 Using Coevolutionary Genetic Programming 85

 5.1 Motivation 86

 5.2 Related Research 86

 5.3 Technical Approach 88

 5.3.1 Design Considerations 88

5.3.2 Selection, Crossover and Mutation 90

 5.3.3 Generational Coevolutionary Genetic Programming 91

 5.4 Experiments 92

 5.4.1 Distinguish Object from Clutter 93

 5.4.2 Recognize Objects 96

 5.4.3 Discussions 102

 5.5 Summary 102

6 Feature Synthesis for Recognition Using Linear
 Genetic Programming 104

 6.1 Introduction 104

 6.2 Motivation, Related Work and Contribution 105

 v

Automatic Design and Synthesis of ATR Systems Using Learning Paradigms

6.2.1 Motivation 105

6.2.2 Related Work 105

6.2.3 Contributions 106

6.3 Technical Approach 107

6.3.1 Evolving Recognition Procedures 107

6.3.2 Representation of Feature Extraction Procedures 107

6.3.3 Cooperative Coevolution 109

6.3.4 Combining Cooperative Coevolution and
Linear Genetic Programming 111

6.4 Experiments 112

6.4.1 Parameter Setting 112

6.4.2 Data and the Learning Task 113

6.5 Results 114

6.6 Summary 116

7 Coevolution and Linear Genetic Programming for
 Recognition-Further Extensions 119

7.1 Introduction 119

7.2 Related Work and Contributions 120

7.2.1 Coevolutionary Construction of Feature
 Extraction Procedures 121

7.2.2 Representation of Feature Extraction Procedures 123

7.2.3 Architecture of the Recognition System 125

7.3 Experimental Results 125

 vi

Automatic Design and Synthesis of ATR Systems Using Learning Paradigms

7.3.1 Scalability 127

7.3.2 Object Variants 128

7.4 Summary 130

8 Conclusions 131

Bibliography 134

 vii

Acknowledgements

Acknowledgements

Authors would like to thank Ken Grier, Dale Nelson and Lou Tamburino for their
guidance and support during the course of this program. Many discussions held
with Ed Zelnio, Tim Ross and Vince Velten were very helpful. This work was
supported by contract F-33615-99-C-1440 from the Air Force Research
Laboratory.

 viii

Chapter 1: Introduction

Chapter 1

Introduction

Object detection and recognition is one of the most important research areas in
computer vision and pattern recognition. It has many applications in target
recognition, video surveillance, etc.

The major task of object detection is to locate and extract regions that may
contain objects in an image. It is an important intermediate step to object
recognition. The extracted regions are called regions-of-interest (ROIs) or object
chips. ROI extraction is very important to object recognition, since the size of an
image is usually large, leading to the heavy computational burden of processing
the whole image. By extracting ROIs, the computational cost of object
recognition is greatly reduced, thus improving the recognition efficiency. This
advantage is particularly useful to real-time applications, where the recognition
speed is of prime importance. Also, by extracting ROIs, the recognition system
can focus on the extracted regions that may contain potential objects and this can
be very helpful in improving the recognition accuracy. Usually, in order to
increase the probability of object detection, some false alarm ROIs, which don’t
contain an object, but a natural clutter or a man-made clutter, are allowed to pass
object detection phase.

The task of object recognition is to reject the false alarm ROIs and recognize the
kinds of objects contained in the ROIs. It is actually a signal-to-symbol problem
of labeling perceived signals with one or more symbols [1]. A solution to this
problem takes images or the features extracted from ROI images as input and
outputs one or more symbols which are the labels of the objects in the images.
Sometimes, the symbols may further represent the pose of the objects or the
relations between different objects. These symbols are intended to capture some
useful aspects of the input and in turn, permit some high level reasoning on the
perceived signals.

As well known, object detection and recognition is really not an easy task. The
quality of detection and recognition is heavily dependent on the kind and quality
of features extracted from an image. The features used to represent an object are
the key to the object detection and recognition. If useful features with

 1

Chapter 1: Introduction

good quality are unavailable to build an efficient representation of an object, the
good detection and recognition results cannot be achieved no matter what
detection and recognition algorithms are used. However, in most real images,
there are always a variety of noises, which make the extraction of features
difficult. More importantly, there are many kinds of features that can be
extracted, what are the appropriate features for the current detection and
recognition task or how to synthesize composite features particularly useful to the
detection and recognition from the primitive features extracted from an image?
There is no easy answer to these questions and the solutions are largely dependent
on the intuitive instinct, knowledge, previous experience and even the bias of
human image experts.

In recent years, with the advent of newer, much improved and inexpensive imag-
ing technologies and the rapid expanding of the Internet, more and more images
are becoming available. Recent developments in image collection platforms pro-
duce far more imagery than the declining ranks of image analysts are capable of
handling due to the speed limit of human being. Relying entirely on human im-
age experts to perform image analysis, processing and classification becomes
more and more unrealistic. Building object detection and recognition systems to
take advantage of the speed of computer is a viable and important solution to the
increasing need of processing a large quantity of images efficiently.

Currently most of the object detection and recognition systems are manually
developed and maintained by human experts. This traditional approach requires a
human expert to select or synthesize a set of features to be used in detection and
recognition. However, handcrafting a set of features requires human ingenuity
and insight into the objects to be detected and recognized since it is very difficult
to identify a set of features that characterize a complex set of objects to be
encountered in the real-world application. Typically, many features are explored
before object detection and recognition systems can be built. Many of these
features may be correlated. To select a set of features which, when acting
corporately, can give good performance is very time consuming and expensive.
Sometimes, simple features (also called primitive features) directly extracted from
images may not be effective in detecting and recognizing objects. At this point,
synthesizing composite features useful for the current detection and recognition
task from those simple ones becomes imperative. Traditionally, it is the human
experts who synthesize features to be used. However, based on their knowledge,
previous experience and limited by their bias and speed, human experts only
consider a small number of conventional features and many unconventional
features are totally ignored. Sometimes it is those unconventional features that
yield very good detection and recognition performance.

Furthermore, after the features are selected or designed by human experts and
incorporated into a detection/recognition system, they are fixed. The features
used by the system are pre-determined and the system cannot generate new
features useful to the current detection and recognition task on the fly based on

 2

Chapter 1: Introduction

the already available features, leading to the inflexibility of the system. Features
useful to the detection and recognition of one kind of object or in the processing
of one kind of imagery may not be effective in the detection and recognition of
another kind of object or in the processing of another kind of imagery. Thus, the
detection and recognition system needs thorough overhaul when applied to other
types of images different from the one when the system was devised. This is very
uneconomical.

Synthesizing effective new features from primitive features is equivalent to find-
ing good points in the feature combination space where each point represents a
combination of primitive features. Similarly, selecting an effective subset of fea-
tures is equivalent to finding good points in the feature subset space where each
point represents a subset of features. The feature combination space and feature
subset space are huge and complicated and it is very difficult to find good points
in such vast spaces unless one has an efficient search algorithm.

Hill climbing, gradient decent and simulated annealing (also called stochastic hill
climbing) are widely used search algorithms. Hill climbing and gradient decent
are efficient in exploring a unimodal space, but they are not suitable for finding
global optimal points in a multi-modal space due to their high probability of being
trapped in local optima. Thus, if the search space is a complicated and multi-
modal space, they are unlikely to yield good search results. Simulated annealing
has the ability to jump out of local optimal points, but it is heavily dependent on
the starting point. If the starting point is not appropriately placed, it takes a long
time, or even impossible, for simulated annealing to reach good points. Further
more, in order to apply simulated annealing algorithm, the neighborhood of a
point must be defined and the neighboring points should be somewhat similar.
This requires some knowledge about the search space and it also requires the
smoothness of the search space.

It is very difficult, if not impossible, to define the neighborhood of a point in the
huge and complicated feature combination and feature subset spaces, since similar
feature combination and similar feature subset may have very different object
detection and recognition performances. Due to the lack of knowledge about
these search spaces, genetic programming (GP) and genetic algorithm (GA) are
employed in this report, since in order to apply GP, GA and LGP (Linear Genetic
Programming), all that one needs to know are how to define individuals, how to
define crossover and mutation operations on the individuals and how to evaluate
individuals. GP, GA and LGP are very much capable of exploring huge
complicated multi-modal spaces with unknown structures [18]. Maintaining a
large population of individuals as multiple searching points, GP, GA and LGP
explore the search spaces along different directions concurrently. With multiple
searching points and the crossover and mutation operations’ ability to
immediately move a searching point from one portion of the search space to
another far away portion, GP and GA are less likely to be trapped at local optimal
points. All these characteristics greatly enhance the probability of finding global

 3

Chapter 1: Introduction

optimal points, although they cannot guarantee the finding of global optima. GP
and GA are not random search algorithms. They are guided by the fitness of the
individuals in the population. As search proceeds, the population is gradually
adapted to the portion of the search space containing good points.

In this report, the techniques necessary to the automatic design of object detection
and recognition systems are investigated. Here, the object detection and
recognition system itself is the theme and the efficacy of evolutionary learning
algorithms such as genetic programming, genetic algorithms and linear genetic
programming in the feature generation and selection is studied. The advantage of
incorporating learning is to avoid the time consuming process of feature selection
and generation and automatically explore many unconventional features. Some
unconventional features yield exceptionally good results in some cases,
overcoming human expert’s limitation of concentrating only on a small number of
conventional features. The resulting systems are able to automatically generate
features on the fly and cleverly select a good subset of features according to the
types of object and images. The goal is to lower the cost of designing object
detection and recognition systems and build more robust and flexible systems
with human-competitive performance.

Chapter 2 discusses synthesizing composite features for object detection. Genetic
programming (GP) is applied to the learning of composite features based on
primitive features and primitive image processing operations. The primitive
features and primitive image processing operations are domain-independent, not
specific to any kind of imagery so that the proposed feature synthesis approach to
be applied to a wide variety of images.

Chapter 3 concentrates on improving the efficiency of genetic programming. A
fitness function based on the minimum description length (MDL) principle is
proposed to address the well-known code bloat problem of GP while at the same
time avoiding severe restriction on the GP search. The MDL fitness function
incorporates the size of a composite operator into the fitness evaluation process to
prevent it from growing too large, reducing possibility of overfitting during
training and the computational expenses during testing. The smart crossover and
smart mutation are proposed to identify the effective components of a composite
operator and keep them from being disrupted by subsequent crossover and
mutation operations to further improve the efficiency of GP.

In Chapter 4, genetic algorithm (GA) is applied to feature selection for
distinguishing objects from natural clutter. Usually, GA is driven by a fitness
function based on the performance of selected features. To achieve excellent
performance during training, GA may select a large number of features.
However, a large number features with excellent performance on training data
may not perform well on unseen testing data due to the overfitting. Also,
selecting more features means heavier computational burden during testing. In
order to overcome this problem, an MDL-based fitness function is designed to

 4

Chapter 1: Introduction

drive GA. With MDL-based function incorporating the number of features
selected into the fitness evaluation process, a small set of features is selected to
achieve satisfactory performance during both training and testing.

Chapter 5 presents a method of learning composite feature vectors for object
recognition. Coevolutionary genetic programming (CGP) is used to synthesize
composite feature vectors based on the primitive features directly extracted from
images. The experimental results using real SAR images show that CGP can
evolve composite features that are more effective than the primitive features upon
which they are built.

Chapter 6 presents linear genetic programming (LGP) in a cooperative
coevolution framework for feature synthesis for object recognition. It provides a
comparison between LGP and the standard genetic algorithm.

Chapter 7 provides further details and extends the ideas of chapter 6 and shows
the results on eight classes of MSTAR SAR data.

Finally, Chapter 8 provides conclusions of this work.

 5

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

Chapter 2

Learning Composite Features for
Object Detection Using Genetic
Programming

Designing automatic object detection systems is one of the important research
areas in computer vision and pattern recognition [2, 3]. The major task of object
detection is to locate and extract regions of an image that may contain potential
objects so that the other parts of the image can be ignored. It is an intermediate
step to object recognition and the regions extracted during detection are called
regions-of-interest (ROIs). However, the quality of object detection is dependent
on the type and quality of features extracted from an image. There are many
features that can be extracted. The question is what are the appropriate features or
how to synthesize features, particularly useful for detection, from the primitive
features extracted from images. The answers to these questions are largely
dependent on the intuitive instinct, knowledge, previous experience and even the
bias of algorithm designers and experts in object detection by computer.

In this chapter, the effectiveness of genetic programming (GP) in synthesizing
composite features, which are the output of composite operators, for object
detection is investigated. A composite operator consists of primitive operators
and primitive feature images. It can be viewed as a way of combining primitive
operations on images. The basic approach is to apply a composite operator on the
original image or primitive feature images generated from the original one; then
the output image of the composite operator, called composite feature image, is
segmented to obtain a binary image or mask; finally, the binary mask is used to
extract the region containing the object from the original image. The individuals
in our GP based learning are composite operators represented by binary tree
whose internal nodes are the pre-specified primitive operators and the leaf nodes
are the original image or the primitive feature images. The primitive feature
images are pre-defined, and they are not the output of the pre-specified primitive
operators.

 6

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

2.1 Motivation
In most imaging applications, human experts design an approach to detect
potential objects in images. The approach can often be dissected into some
primitive operations on the original image or a set of related feature images
obtained from the original one. It is the expert who, relying on his/her rich
experience, figures out a smart way to combine these primitive operations to
achieve good detection results. The task of synthesizing a good approach is
equivalent to finding a good point in the space of composite operators formed by
the combination of primitive operations.

Unfortunately, the ways of combining primitive operations are almost infinite.
Limited by their knowledge, bias and speed, the human experts can only try a
very limited number of conventional combinations, exploring just a very small
portion of the composite operator space. Many unconventional combinations are
regarded as nonsense, leaving a large portion of the composite operator space
untouched. GP, however, may try many unconventional ways of combining
primitive operations that may never be imagined by a human expert. Although
these unconventional combinations are very difficult, if not impossible, to be
explained by domain experts, in some cases, it is these unconventional
combinations that yield exceptionally good detection results. In addition, the
inherent parallelism of GP and the high speed of current computers allow the
portion of the search space explored by GP to be much larger than that by human
experts, enhancing the probability of finding an effective composite operator.
The search performed by GP is not a random search. It is guided by the fitness of
composite operators in the population. As the search proceeds, GP gradually
shifts the population to the portion of the space containing good composite
operators.

2.2 Related Research
Genetic programming, an extension of genetic algorithm, was first proposed by
Koza [4] and has been used in image processing, object detection and object
recognition. Harris et al. [5] applied GP to the production of high performance
edge detectors for 1D signals and image profiles. The method is also extended to
the development of practical edge detectors for use in image processing and
machine vision. Poli [6] used GP to develop effective image filters to enhance
and detect features of interest or to build pixel-classification-based segmentation
algorithms. Bhanu and Lin [7] used GP to learn composite operators for object
detection. Their initial experimental results showed that GP is a viable way of
synthesizing composite operators from primitive operations for object detection.
Stanhope and Daida [8] used GP to generate rules for target/clutter classification
and rules for the identification of objects. To perform these tasks, previously
defined feature sets are generated on various images and GP is used to select

 7

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

relevant features for analyzing these features. Howard et al. [9] applied GP to
automatic detection of ships in low-resolution SAR imagery by evolving
detectors. Roberts and Howard [10] used GP to develop automatic object
detectors in infrared images.

Unlike the work of Stanhope and Daida [8], Howard et al. [9] and Roberts and
Howard [10], the input and output of each node of the tree in our system are
images, not real numbers. The primitive features defined in this chapter are more
general and easier to compute than those used in [8, 9]. Unlike my previous work
[7], the training in this chapter is not performed on a whole image, but on the
selected regions of an image to greatly reduce the training time. Of course,
training regions must be carefully selected and represent the characteristics of the
training image [11]. Also, two other types of mutation are added to further
increase the diversity of the population. Finally, more primitive feature images
are employed. The primitive operators and primitive features designed in this
chapter are very basic and domain-independent, not specific to a kind of imagery.
Thus, the system and methodology can be applied to a wide variety of images
such as synthetic aperture radar (SAR), infrared (IR) and RGB color video
images.

2.3 Technical Approach
In the GP based approach of this report, individuals are composite operators
represented by binary trees. The search space of GP is the space of all possible
composite operators. The space is very large. To illustrate this, consider only a
special kind of binary tree, where each tree has exactly 29 internal nodes and one
leaf node and each internal node has only one child. For 17 primitive operators
and only one primitive feature image, the total number of such trees is 1729. It is
extremely difficult to find good composite operators from this vast space unless
one has a smart search strategy.

2.3.1 Design Considerations
There are five major design considerations, which involve determining the set of
terminals, the set of primitive operators, the fitness measure, the parameters for
controlling the evolutionary run, and the criterion for terminating a run.

• The set of terminals: The set of terminals used in this chapter are sixteen
primitive feature images generated from the original image: the first one is the
original image; the others are mean, deviation, maximum, minimum and median
images obtained by applying templates of sizes 3×3, 5×5 and 7×7, as shown in
Table 2.1. These images are the input to composite operators. GP determines
which operations are applied on them and how to combine the results. To get the
mean image, a template is translated across the original image and the average
pixel value of the pixels covered by the template replaces the pixel value of the
pixel covered by the central cell of the template. To get the deviation image, the

 8

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

pixel value difference between the pixel in the original image and its
corresponding pixel in the mean image is computed. To get maximum, minimum
and median images, a template is translated across the original image and the
maximum, minimum and median pixel values of the pixels covered by the
template replace the pixel value of the pixel covered by the central cell of the
template, respectively.

v

 Table 2.1. Sixteen primitive feature images used as the set of terminal.

No. Primitive
feature
image

description No. Primitive
feature
image

description

0 PFIM0 Original image 8 PFIM8 5×5 maximum image
1 PFIM1 3×3 mean image 9 PFIM9 7×7 maximum image
2 PFIM2 5×5 mean image 10 PFIM10 3×3 minimum image
3 PFIM3 7×7 mean image 11 PFIM11 5×5 minimum image
4 PFIM4 3×3 deviation image 12 PFIM12 7×7 minimum image
5 PFIM5 5×5 deviation image 13 PFIM13 3×3 median image
6 PFIM6 7×7 deviation image 14 PFIM14 5×5 median image
7 PFIM7 3×3 maximum image 15 PFIM15 7×7 median image

• The set of primitive operators: A primitive operator takes one or two input
images, performs a primitive operation on them and stores the result in a resultant
image. Currently, 17 primitive operators are used by GP to evolve composite
operators, as shown in Table 2.2, where A and B are input images of the same
size and c is a constant (ranging from –20 to 20) stored in a primitive operator.
For operators such as ADD, SUB, MUL, etc. that take two images as input, the
operations are performed on the pixel-by-pixel basis. In the operators MAX,
MIN, MED, MEAN and STDV, 3×3, 5×5 or 7×7 neighborhood are used with
equal probability.

• The fitness measure: The fitness value of a composite operator is computed
in the following way. Suppose G and G′ are foregrounds in the ground truth
image and the resultant image of the composite operator respectively. Let n(X)
denote the number of pixels within region X, then Fitness = n(G∩G′) / n(G ∪ G′).
The fitness value is between 0 and 1. If G and G′ are completely separated, the
value is 0; if G and G′ are completely overlapped, the value is 1.

• Parameters and termination: The key parameters are the population size M,
the number of generation N, the crossover rate, the mutation rate and the fitness
threshold. The GP stops whenever it finishes the pre-specified number of
generations or whenever the best composite operator in the population has fitness

alue greater than the fitness threshold.

 9

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

2.3.2 Selection, Crossover and Mutation
GP searches through the space of composite operator to generate new composite
operators, which may be better than the previous ones. By searching through the
composite operator space, GP adapts the population of composite operators from
generation to generation and improves the overall fitness of the whole population.
More importantly, GP may find an exceptionally good composite operator during
the search. The search is done by performing selection, crossover and mutation
operations. The initial population is randomly generated and the fitness of each
individual is evaluated.

• Selection: The selection operation involves selecting composite operators
from the current population. In this chapter, tournament selection is used, where a
number of individuals are randomly selected from the current population and the
one with the highest fitness value is copied into the new population. The size of
tournament is 5.

• Crossover: To perform crossover, two composite operators are selected on
the basis of their fitness values. The higher the fitness value, the more likely the
composite operator is selected for crossover. These two composite operators are
called parents. One internal node in each of these two parents is randomly
selected, and the two subtrees rooted at these two nodes are exchanged between
the parents to generate two new composite operators, called offspring. The
offspring are composed of subtrees from their parents. If two composite operators
are somewhat effective in detection, then some of their parts probably have some
merit. The reason that an offspring may be better than the parents is that
recombining randomly chosen parts of effective composite operators may yield a
new composite operator that is more effective in detection.

It is easy to see that the size of one offspring (i.e., the number of nodes in the
binary tree representing the offspring) may be greater than those of both parents.
So if we do not control the size of a composite operator by implementing
crossover in this simple way, the sizes of composite operators will become larger
and larger as GP proceeds. This is the well-known code bloat problem of GP. It
is a very serious problem, since when the size becomes too large; it will take a
long time to execute a composite operator, greatly reducing the search speed of
GP. Further, large-size composite operators may overfit training data by
approximating various noisy components of an image. Although the results on
the training image may be very good, the performance on unseen testing images
may be bad. Also, large composite operators take up a lot of computer memory.
Due to the finite computer resources and the desire to achieve a good running
speed (efficiency) of GP, we must limit the size of a composite operator by
specifying a maximum size. Currently, a simple method is used to address this
problem by setting a size limit on the size of a composite operator. If the size of
an offspring exceeds the maximum size allowed, the crossover operation is
performed again until the sizes of both offspring are within the limit. Although

 10

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

this simple method guarantees that the size of a composite operator won’t exceed
the size limit, the hard size limit greatly restricts the search performed by GP,
since after randomly selecting a crossover point in one composite operator, GP
cannot select some nodes of the other composite operator as crossover points in
order to guarantee that both offspring won’t exceed the size limit. Restricting the
search greatly reduces the efficiency of GP, making it less likely to find good
composite operators. In chapter 3, a new fitness function based on minimum
description length (MDL) principle will be used to incorporate the size of a
composite operator into the fitness evaluation process to prevent the code bloat
without imposing severe restriction on the GP search. The essential idea of
applying MDL-based fitness function is to find a balance point between the above
two conflicting factors.

No. Operator
1 ADD (A,

B)
Ad

2 SUB (A, B) Su
3 MUL (A,

B)
Mu

4 DIV (A, B) Di
res
va

5 MAX2 (A,
B)

Th
ag

6 MIN2 (A,
B)

Th
im

7 ADDC (A) Inc
8 SUBC (A) De
9 MULC (A) Mu

10 DIVC (A) Di
11 SQRT (A) Fo

erw
12 LOG (A) Fo

Ot
13 MAX (A) Re

5×
14 MIN (A) Re

or
15 MED (A) Re

7×
16 MEAN (A) Re

or
17 STDV (A) Re

3×

Table 2.2. Seventeen primitive operators.

Description
d images A and B.

btract image B from A.
ltiply images A and B.

vide image A by image B (If the pixel in B has value 0, the cor-
ponding pixel in the resultant image takes the maximum pixel
lue in A).
e pixel in the resultant image takes the larger pixel value of im-
es A and B.
e pixel in the resultant image takes the smaller pixel value of
ages A and B.
rease each pixel value by c.
crease each pixel value by c.
ltiply each pixel value by c.

vide each pixel value by c.
r each pixel with value v, if v ≥ 0, change its value to v . Oth-
ise, to v−− .

r each pixel with value v, if v ≥ 0, change its value to ln(v).
herwise, to –ln(-v).
place the pixel value by the maximum pixel value in a 3×3,
5 or 7×7 neighborhood.
place the pixel value by the minimum pixel value in a 3×3, 5×5
7×7 neighborhood.
place the pixel value by the median pixel value in a 3×3, 5×5 or
7 neighborhood.
place the pixel value by the average pixel value of a 3×3, 5×5
7×7 neighborhood.
place the pixel value by the standard deviation of pixels in a
3, 5×5 or 7×7 neighborhood.
 11

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

• Mutation: In order to avoid premature convergence, mutation is introduced
to randomly change the structure of some individuals to maintain the diversity of
the population. Composite operators are randomly selected for mutation. There
are three types of mutation invoked with equal probability:

1. Randomly select a node of the binary tree representing a composite operator
and replace the subtree rooted at this node, including the node selected, by
another randomly generated binary tree

2. Randomly select a node of the binary tree representing a composite operator
and replace the primitive operator stored in the node with another primitive
operator of the same number of inputs as the replaced one. The replacing
primitive operator is selected at random from all the primitive operators
with the same number of input as the replaced one.

3. Randomly select two subtrees within a composite operator and swap them.
Of course, neither of the two sub-trees can be a sub-tree of the other.

2.3.3 Steady-state and Generational Genetic Programming
Both steady-state and generational genetic programming are used in this chapter.
In steady-state GP, two parent composite operators are selected on the basis of
their fitness for crossover. The offspring of this crossover replace a pair of
composite operators with the smallest fitness values. The two offspring are
executed immediately and their fitness values are recorded. Then another two
parent composite operators are selected for crossover. This process is repeated
until crossover rate is satisfied. Finally, mutation is applied to the resulting
population and the mutated composite operators are executed and evaluated. The
above cycle is repeated from generation to generation. In generational GP, two
composite operators are selected on the basis of their fitness values for crossover
and generate two offspring. The two offspring are not put into the current
population and won’t participate in the following crossover operations on the
current population. The above process is repeated until crossover rate is satisfied.
Then, mutation is applied to the composite operators in the current population and
the offspring from crossover. After mutation is done, selection is applied to the
current population to select some composite operators. The number of composite
operators selected must meet the condition that after combining with the
composite operators from crossover, a new population of the same size as the old
one is resulted. Finally, combine the composite operators from crossover with
those selected from the old population to get a new population and the next
generation begins. In addition, an elitism replacement method is adopted to keep
the best composite operator from generation to generation.

• Steady-state Genetic Programming:
0. randomly generate population P of size M and evaluate each composite

operator in P.

 12

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

1. for gen = 1 to N do // N is the number of generation
2. keep the best composite operator in P.
3. repeat
4. select 2 composite operators from P based on their fitness values for

crossover.
5. select 2 composite operators with the lowest fitness values in P for

replacement.
6. perform crossover operation and let the 2 offspring replace the 2

composite operators selected for replacement.
7. execute the 2 offspring and evaluate their fitness values.
8. until crossover rate is met.
9. perform mutation on each composite operator with probability of muta-

tion rate and evaluate mutated composite operators.
10. After crossover and mutation, a new population P’ is generated.
11. let the best composite operator from population P replace the worst

composite operator in P’ and let P = P’.
12. if the fitness value of the best composite operator in P is above fitness

threshold value then
13. stop.

endif
 endfor // loop 1

• Generational Genetic Programming:

0. randomly generate populations of size M and evaluate each composite
operator in P.

1. for gen = 1 to N do // N is the number of generation
2. keep the best composite operator in P.
3. perform crossover on the composite operators in P until crossover rate

is satisfied and keep all the offspring from crossover separately.
4. perform mutation on the composite operators in P and the offspring

from crossover with the probability of mutation rate.
5. perform selection on P to select some composite operators. The number

of selected composite operators must be M minus the number of com-
posite operators from crossover.

6. combine the composite operators from crossover with those selected
from P to get a new population P’ of the same size as P.

7. evaluate offspring from crossover and the mutated composite opera-
tors.

8. let the best composite operator from P replace the worst composite op-
erator in P’ and let P = P’.

9. if the fitness of the best composite operator in P is above fitness
threshold then

10. stop.

 13

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

 endif
 endfor // loop 1

2.4 Experiments
Various experiments are performed to test the efficacy of genetic programming in
extracting regions of interest from real synthetic aperture radar (SAR) images,
infrared (IR) images and RGB color images. The size of SAR images is 128×128,
except the tank SAR images whose size is 80×80, and the size of IR and RGB
color images is 160×120. GP (in subsections 1.3.1 and 1.3.2) is not applied to a
whole training image, but only to a region or regions carefully selected from the
training image, to generate composite operators. The best-generated composite
operator is then applied to the whole training image and to some other testing
images to evaluate it. The advantage of performing training on a small selected
region is that it can greatly reduce the training time, making it practical for the GP
system to be used as a subsystem of other learning systems, which improve the
efficiency of GP by adapting the parameters of GP system based on its
performance. The experiments show that if training regions are carefully selected
from a training image, the best composite operator generated by GP is effective.
In the following experiments in sections 1.3.1 and 1.3.2, the parameters are:
population size (100), the number of generations (70), the fitness threshold value
(1.0), the crossover rate (0.6), the mutation rate (0.05), the maximum size of
composite operator (30), and the segmentation threshold (0). In each experiment,
GP is invoked ten times with the same parameters and the same training region(s).
The coordinate of the upper left corner of an image is (0, 0). The ground truth is
used only during training; it is not needed during testing. It is used in testing only
for evaluating the performance of the composite operator on testing images.

2.4.1 SAR Images

Five experiments are performed with real SAR images. The experimental results
from one run and the average performance of ten runs are reported in Table 2.3.
The results of the run in which GP finds the best composite operator among the
composite operators found in all ten runs are reported. The first two rows show
the fitness value of the best composite operator and the population fitness value
(average fitness value of all the composite operators in the population) on training
region(s) in the initial and final generations in the selected run. The numbers in
the parenthesis in the “fop” columns are the fitness values of the best composite
operators on the whole training image (numbers with a * superscript) and other
testing images in their entirety. The last two rows show the average values of the
above fitness values over all ten runs. The regions extracted during the training

 14

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

and testing by the best composite operator from the selected run are shown in the
following examples.

• Example 1  Road extraction: Three images contain road, the first one
contains horizontal paved road and field (Fig 2.1(a)); the second one contains
unpaved road and field (Fig 2.8(a)); the third one contains vertical paved road and
grass (Fig 2.8(d)). Training is done on the training regions of the training image
shown in Figure 2.1(a) and testing is performed on the whole training image and
testing images. There are two training regions, locating from (5, 19) to (50, 119)
and from (82, 48) to (126, 124), respectively. Figure 2.1(b) shows the ground
truth provided by the user and the training regions. The white region corresponds
to the road and only the ground truth in the training regions is used in the
evaluation during the training. Figure 2.2 shows the sixteen primitive feature
images of the training image.

The generational GP is used to synthesize a composite operator to extract the road
and the results of the 7th run are reported. The fitness value of the best composite
operator in the initial population is 0.60 and the population fitness value is 0.27.
The fitness value of the best composite operator in the final population is 0.94 and

Table 2.3. The performance on various examples of SAR images.
(fop = fitness of the best composite operator, fp = fitness of population, *: indicate finess on
training images, finitial = fitness in the initial generation, ffinal = fitness in the final population)

Road Lake River Field Tank

fop fp fop fp fop fp fop fp fop fp

finitial 0.60 0.27 0.62 0.30 0.59 0.19 0.52 0.38 0.65 0.17

ffinal

0.94
(0.90*,
0.90,
0.93)

0.93
0.99

(0.95*,
0.97)

0.95
0.89

(0.72*,
0.83)

0.86
0.78

(0.88*,
0.81)

0.77
0.88

(0.88*,
0.84)

0.87

Ave.
finitial 0.47 0.26 0.64 0.32 0.49 0.18 0.53 0.38 0.49 0.16

Ave.
ffinal 0.82 0.81 0.93 0.92 0.82 0.77 0.73 0.72 0.85 0.83

the population fitness value is 0.93. Figure 2.1(c) shows the output image of the
best composite operator on the whole training image and Figure 2.1(d) shows the
binary image after segmentation. The output image has both positive pixels in
brighter shade and negative pixels in darker shade. Positive pixels belong to the
region to be extracted. The fitness value of the extracted ROI is 0.90. The best
composite operator has 27 nodes and its depth is 16. It has five leaf nodes, three
contain 5×5 median image and the other two contain 7×7 median image. The

 15

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

median images have less speckle noise, since median filtering is effective in
eliminating speckle noises. It is shown in Figure 2.3, where PFIM14 and PFIM15

(c) composite feature
image

(d) ROI
extracted

(b) ground
truth

(a) paved road
vs. field

 Figure 2.1. Training SAR image containing road.

PFIMPFIMPFIMPFIMPFIMPFIMPFIMPFIM

PFIM15PFIM PFIM1 PFIM1 PFIM1PFIM PFIM1 PFIM1
 Figure 2.2. Sixteen primitive feature images of training SAR image containing road.

are 5×5 and 7×7 median images, respectively. Figure 2.4 shows how the average
fitness of the best composite operators and the average fitness of the populations
over all the 10 runs change as GP explore the composite operator space. It is
obvious that GP gradually shifts the population to the regions of space containing
good composite operators.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5 10152025303540455055606570

generation

fit
ne

ss

best

population

(MAX (MAX (MIN (DIVC (DIV
(ADDC (ADD (ADDC (ADD (SUBC
(ADDC (ADD (SUBC (STDV (MAX
(SUBC PFIM15)))) (MAX (SUBC
PFIM14))))) (MAX (SUBC
PFIM14)))) (MAX (SUBC PFIM14))))
PFIM15)))))

Figure 2.4. Fitness versus generation (road
vs. field).

Figure 2.3. Learned composite
operator tree in LISP notation.

 16

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

10 best composite operators are obtained in the initial and final generations of 10
runs, respectively. After computing the percentage of each primitive operator and
primitive feature image among the total number of internal nodes (representing
primitive operator) and total number of leaf nodes (representing primitive feature
image) of 10 best composite operators, the utility of these primitive operators and
primitive feature images in the initial and final populations is obtained, which is
shown in Figure 2.5. Compared to those in the final population, the utilities of

0
0.02
0.04
0.06
0.08
0.1

1 3 5 7 9 11 13 15 17

(b) primitive operator (initial population)

ut
ili

ty

0

0.05

0.1

0.15

0.2

1 3 5 7 9 11 13 15 17

(d) primitive operator (final population)

ut
ili

ty
0

0.05

0.1

0.15

0 2 4 6 8 10 12 14

(a) primitive feature image (initial
population)

ut
ili

ty

0

0.05

0.1

0.15

0 2 4 6 8 10 12 14

(c) primitive feature image (final
population)

ut
ili

ty

Figure 2.5. Utility of primitive operators and primitive feature images.

primitive feature images and primitive operators are relatively uniformly distrib-
uted in the initial population. In the final population, primitive feature images
PFIM7 (3×3 maximum image) and PFIM15 (7×7 median image) and primitive
operator MED (primitive operator 15) have the highest frequency of utility. As
well known, median filter is effective in eliminating speckle noise in SAR images.
Figure 2.6 shows the output image of each node of the best composite operator
shown in Figure 2.3. The primitive operators in Figure 2.6 are connected by ar-
row. The operator at the tail of an arrow provides input to the operator at the head
of the arrow. After segmenting the output image of a node, the ROI (shown as the
white region) extracted by the corresponding subtree rooted at the node is ob-
tained. The extracted ROIs and their fitness values are shown in Figure 2.7. If an
output image has positive pixels only (for example, PFIM14 has positive pixels
only), everything is extracted and the fitness is 0.25.

The composite operator obtained in the above training is applied to the other two
real SAR images shown in Figure 2.8(a) and 2.8(d). Figure 2.8(b) and 2.8(e)

 17

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

show the output of the composite operator and Figure 2.8(c) shows the region ex-
tracted from Figure 2.8(a). The fitness value of the region is 0.90. Figure 2.8(f)

PFIM14 SUBCMAX

ADDC

PFIM14SUBCMAX

ADDC PFIM14 SUBCMAX

PFIM15 ADDC

MIN DIVCMAX MAX

STDV

SUBC

ADD

SUBC

ADD

ADD

DIV

 MAX SUBC PFIM15
 Figure 2.6. Feature images output by the nodes of the best composite operator.

 18

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

shows the region extracted from Figure 2.8(d) and the fitness value of the region,
which is 0.93.

PFIM14
(0.25)

PFIM15 (0.25)

PFIM14
(0.25)

SUBC
(0.14)

MAX
(0.21)

ADDC
(0.10)

PFIM14
(0.25)

SUBC
(0.14)

MAX
(0.21)

ADDC (0.09) SUBC
(0.14)

MAX
(0.21)

ADDC (0.08)

MIN (0.50) DIVC (0.63) MAX
(0.74)

MAX
(0.90)

STDV (0.25)

SUBC (0.25)

ADD (0.25)

SUBC (0.12)

ADD (0.15)

ADD (0.12)

DIV (0.08)

MAX
(0.19)

SUBC
(0.14)

PFIM15
(0.25)

Figure 2.7. ROIs extracted from the output images of the nodes of the best composite
operator. (The fitness value is shown for the entire image.)

 19

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

(e) composite
feature image

(a) unpaved
road vs. field

(f) ROI
extracted

(d) paved road
vs. grass

(b) composite
feature image

(c) ROI
extracted

 Figure 2.8. Testing SAR images containing road.

• Example 2  Lake extraction: Two SAR images contain lake (Fig 2.9(a),
2.10(a)), the first one contains a lake and field, and the second one contains a lake
and grass. Figure 2.9(a) shows the original training image containing lake and
field and the training region from (85, 85) to (127, 127). Figure 2.9(b) shows the
ground truth provided by the user. The white region corresponds to the lake to be
extracted. Figure 2.10(a) shows the image containing lake and grass.

(c) composite
feature image

(a) lake vs. field (b) ground truth (d) ROI extracted

 Figure 2.9. Training SAR image containing lake.

The steady-state GP is used to generate the composite operator and the results of
the 4th run are reported. The fitness value of the best composite operator in the
initial population is 0.62 and the population fitness value is 0.30. The fitness
value of the best composite operator in the final population is 0.99 and the
population fitness value is 0.95. Figure 2.9(c) shows the output image of the best
composite operator on the whole training image and Figure 2.9(d) shows the
binary image after segmentation. The fitness value of the extracted ROI is 0.95.
The composite operator is applied to the testing image containing lake and grass.
Figure 2.10(b) shows the output of the composite operator and Figure 2.10(c)
shows the region extracted. The fitness of the region is 0.97.

• Example 3  River extraction: Two SAR images contain river and field.
Figure 2.11(a) and 2.11(b) show the original training image and the ground truth
provided by the user. The white region in Figure 2.11(b) corresponds to the river
to be extracted. The training regions are from (68, 31) to (126, 103) and from (2,
8) to (28, 74). The testing SAR image is shown in Figure 2.14(a).

 20

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

The steady-state GP is used to generate composite operators and the results of the
first run are reported. The fitness value of the best composite operator in the
initial population is 0.59 and the population fitness value is 0.19. The fitness
value of the best composite operator in the final population is 0.89 and the
population fitness value is 0.86. Figure 2.11(c) shows the output image of the
best composite operator on the whole training image and Figure 2.11(d) shows the
binary image after segmentation. The fitness value of the extracted ROI is 0.72.
The best composite operator has 30 nodes and its depth is 23. It has four leaf
nodes, three contain 5×5 mean image and the other one contains 3×3 mean image.

 (b) composite feature
image

(a) lake vs. grass (c) ROI extracted

Figure 2.10. Testing SAR image containing lake.

 (b) ground truth (c) composite
feature image

(a) river vs. field (d) ROI extracted

Figure 2.11. Training SAR image containing river.

0.1

0.3
0.5

0.7

0.9

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

fit
ne

ss

best

population

(MULC (MED (MED (MED
(MED (MED (MED (MED (MED
(MED (MED (MIN (ADDC (LOG
(ADD (MAX (MIN (MULC
PFIM2))) (DIV (MIN (MULC
(MED (MIN (MAX (SUB PFIM2
(MULC PFIM2)))))))
PFIM1))))))))))))))))

Figure 2.12. Learned composite operator
tree in LISP notation.

Figure 2.13. Fitness versus generation
(river vs. field).

There are more than ten MED operators that are very useful in eliminating
speckle noises. It is shown in Figure 2.12. Figure 2.13 shows how the average

 21

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

fitness of the best composite operators and the average fitness of the populations
over all the 10 runs change as GP explores the composite operator space.

The composite operator is applied to the testing image containing a river and
field. Figure 2.14(b) shows the output of the composite operator and Figure
2.14(c) shows the region extracted from Figure 2.14(a) and the fitness value of the
extracted region is 0.83. There are some islands in the river and these islands
along with the river around them are not extracted, since the islands look similar
to the field.

(b) composite feature image (a) river vs. field (c) ROI extracted

 Figure 2.14. Testing SAR image containing river.

• Example 4  Field extraction: Two SAR images contain field and grass.
Figure 2.15(a) and 2.15(b) show the original training image and the ground-truth.
The training regions are from (17, 3) to (75, 61) and from (79, 62) to (124, 122).
Extracting field from a SAR image containing field and grass is considered as the
most difficult task among the five experiments, since the grass and field are
similar to each other and some small regions between grassy areas are actually
field pixels.

(d) ROI extracted (c) composite

feature image
(a) field vs. grass (b) ground truth

Figure 2.15. Training SAR image containing field.

The generational GP was used to generate composite operators and the results
from the 7th run are reported. The fitness value of the best composite operator in
the initial population is 0.52 and the population fitness value is 0.38. The fitness
value of the best composite operator in the final population is 0.78 and the
population fitness value is 0.77. Figure 2.15(c) shows the output image of the
best composite operator on the whole training image and Figure 2.15(d) shows the
binary image after segmentation. The fitness value of the extracted ROI is 0.88.
The composite operator is applied to the testing image containing field and grass

 22

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

shown in Figure 2.16(a). Figure 2.16(b) shows the output of the composite
operator and Figure 2.16(c) shows the region extracted from Figure 2.16(a). The
fitness value of the region is 0.81.

Example 5  Tank extraction: In this subsection, GP is applied to synthesize
features for the detection of military targets and this application is of special
importance. The military targets used in this chapter are T72 tanks. Their SAR
images are taken under different depression and azimuth angles and the size of the
images is 80×80. The training image contains T72 tank under depression angle
17° and azimuth angle 135°, which is shown in Figure 2.17(a). The training
region is from (19, 17) to (68, 66). The testing SAR image contains a T72 tank

(b) composite feature image (a) field vs. grass (c) ROI extracted
Figure 2.16. Testing SAR image containing field.

under depression angle 20° and azimuth angle 225°, which is shown in Figure
2.20(a). The ground-truth is shown in Figure 2.17(b).

The generational GP is applied to synthesize composite operators for tank
detection and the results from the 6th run are reported. The fitness value of the
best composite operator in the initial population is 0.65 and the population fitness
value is 0.17. The fitness value of the best composite operator in the final
population is 0.88 and the population fitness value is 0.87. Figure 2.17(c) shows

(b) ground truth (c) composite

feature image
(a) T72 tank (d) ROI extracted

Figure 2.17. Training SAR image containing tank.

the output image of the best composite operator on the whole training image and
Figure 2.17(d) shows the binary image after segmentation. The fitness value of
the extracted ROI is 0.88. The best composite operator has 28 nodes and its depth
is 17. It has four leaf nodes, two contain the 3×3 minimum image, one contains
7×7 maximum image and the final one contains 7×7 minimum image. It is shown

 23

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

in Figure 2.18. Figure 2.19 shows how the average fitness of the best composite
operators and the average fitness of the populations over all the 10 runs change as
GP proceeds.

0.1
0.3
0.5

0.7
0.9

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

g e n e r at io n

fit
ne

ss

bes t

population

(MED (MED (MUL (MIN PFIM10)
(MUL (MAX PFIM12) (MIN2 (MAX
(SUBC (DIVC (MIN (MEAN
PFIM9))))) (SUBC (MED (SUBC
(MAX (MAX (SUBC (MAX (MAX
(SUBC (MAX (MAX (SUBC
PFIM10)))))))))))))))))

Figure 2.18. Learned composite operator
tree in LISP notation.

Figure 2.19. Fitness versus generation
(T72 tank).

The composite operator is applied to the testing image containing T72 tank under
depression angle 20° and azimuth angle 225°. Figure 2.20(b) shows the output of
the composite operator and Figure 2.20(c) shows the region corresponding to the
tank. The fitness of the extracted ROI is 0.84. The results show that GP is very
much capable of synthesizing composite operators for military target detection.
With more and more SAR images collected by satellites and airplanes, it is
impractical for human experts to scan each SAR image to find military targets.
Applying the synthesized composite operators on these images, regions
containing potential targets can be quickly detected and passed on to an automatic
target recognition system or human experts for further examination.
Concentrating on the regions of interest, the human experts and recognition
systems can perform recognition task more effectively and more efficiently.

 (c) ROI extracted (b) composite feature image (a) T72 tank

 Figure 2.20. Testing SAR image containing tank.

2.4.2 IR and RGB Color Images

One experiment is performed with IR images and one is performed with RGB
color images. The experimental results from one run and the average
performance of ten runs are reported in Table 2.4. As in Subsection 2.4.1, the
results of the run in which GP finds the best composite operator among the
composite operators found in all the ten runs are reported. The regions extracted

 24

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

during the training and testing by the best composite operator from the selected
run are shown in the following examples.

People extraction in IR images: In IR images, pixel values correspond to the
temperature in the scene. There are four IR images with one used in training and
the other three used in testing. Figure 2.21(a) and (b) show the training image and
the ground truth. There are two training regions from (59, 9) to (106, 88) and
from (2, 3) to (21, 82), respectively. The left training region contains no pixel
belonging to the person. The reason for selecting it during training is that there
are major changes of pixel intensities among the pixels in the region. Nothing in
this region should be detected. The fitness of composite operator on this region is
defined as one minus the percentage of pixels detected in the region. If nothing is

Table 2.4. The performance on examples of IR and RGB color images. (fop = fitness of the best
composite operator, fp = fitness of population, *: indicate fitness on training images, finitial = fitness
in the initial generation, ffinal = fitness in the final population)

IR Image  People Color Image  Car

fop fp fop fp
finitial 0.53 0.21 0.56 0.19

ffinal 0.93
(0.85*, 0.83, 0.79, 0.85) 0.83

0.82
(0.75*, 0.73) 0.79

Ave. finitial 0.60 0.21 0.43 0.18
Ave. ffinal 0.89 0.73 0.72 0.70

 (c) composite
feature image

(b) ground truth (d) ROI extracted (a) person

 Figure 2.21. Training IR image containing person.

detected, the fitness value is 1.0. Averaging the fitness values on the two training
regions, we get the fitness during training. When the learned composite operator
is applied to the whole training image, the fitness is computed as a measurement
of the overlap between the ground truth and the extracted ROI, as we did in the
previous experiments. Three testing IR images are shown in Figure 2.24(a), (d)
and (g).

 25

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

The generational GP is applied to synthesize composite operators for person
detection and the results from the third run are reported. The fitness value of the
best composite operator in the initial population is 0.53 and the population fitness
value is 0.21. The fitness value of the best composite operator in the final
population is 0.93 and the population fitness value is 0.83. Figure 2.21(c) shows
the output image of the best composite operator on the whole training image and
Figure 2.21(d) shows the binary image after segmentation. The fitness value of
the extracted ROI is 0.85. The best composite operator has 20 nodes and its depth
is 9. It has five leaf nodes and is shown in Figure 2.22. Figure 2.23 shows how
the average fitness of the best composite operators and the average fitness of the
populations over all the 10 runs change as GP proceeds.

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

fit
ne

ss

best

population

(ADDC (LOG (MUL PFIM13 (MIN2
(MIN2 (MIN2 (ADDC (ADDC (LOG
PFIM3))) (ADDC (LOG PFIM3)))
(ADDC (LOG PFIM3))) (ADDC
(LOG PFIM13))))))

Figure 2.22. Learned composite operator
tree in LISP notation.

Figure 2.23. Fitness versus generation
(person).

(f) ROI extracted (e) composite feature image (d) person

(c) ROI extracted (b) composite feature image (a) person

(g) person (h) composite feature image (i) ROI extracted

 Figure 2.24. Testing IR images containing person.

 26

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

The composite operator is applied to the testing images shown in Figure 2.24.
Figure 2.24(b), (e) and (h) show the output of the composite operator and Figure
2.24(c), (f) and (i) show the ROI extracted. Their fitness values are 0.83, 0.79 and
0.85 respectively.

• Car extraction in RGB color image: GP is applied to learn features to
detect car in RGB color images. Unlike previous experiments, the primitive
feature images in this experiment are RED, GREEN and BLUE planes of RGB
color image. Figure 2.25(a), (b) and (c) show the RED, GREEN and BLUE
planes of the training image. The ground truth is shown in Figure 2.25(d). The
training region is from (21, 3) to (91, 46).

(c) BLUE plane (b) GREEN plane (a) RED plane

 (f) ROI extracted (d) ground truth (e) composite feature image

Figure 2.25. Training RGB color image containing car.

The steady-state GP is applied to synthesize composite operators for car detection
and the results from the 4th run are reported. The fitness of the best composite
operator in the initial population is 0.56 and the population fitness is 0.19. The
fitness of the best composite operator in the final population is 0.82 and the
population fitness is 0.79. Figure 2.25(e) shows the output image of the best
composite operator on the whole training image and Figure 2.25(f) shows the
binary image after segmentation. The fitness value of the extracted ROI is 0.75.
The best composite operator has 30 nodes and its depth is 18. It has six leaf nodes

Figure 2.26. Learned composite operator
tree in LISP notation.

0.15

0.35

0.55

0.75

0 5 10 15 2025 30 3540 4550 55 6065 70

generation

fit
ne

ss

best

population

(DIVC (MED (SUB PFB (MIN2
(ADD PFR (DIVC (DIVC (MULC
(DIVC (MULC PFB)))))) (ADDC
(DIVC (MULC (ADDC (MIN2 PFB
(MIN2 PFB (ADDC (DIVC (MULC
(ADDC (DIVC (MULC (DIVC
(MULC PFR))))))))))))))))))

Figure 2.27. Fitness versus generation (car).

 27

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

with two of them containing RED plane and the others contain BLUE plane. It is
shown in Figure 2.26, where PFR means RED plane and PFB means BLUE plane.
Figure 2.27 shows how the average fitness of the best composite operators and the
average fitness of the populations over all the 10 runs change as GP proceeds.

The composite operator is applied to the testing image whose RED plane is shown
in Figure 2.28(a). Figure 2.28(b) shows the output of the composite operator and
Figure 2.28(c) shows the ROI extracted. The fitness value of extracted ROI is
0.73.

 (a) RED plane (c) ROI extracted (b) composite feature image
 Figure 2.28. Testing RGB color image containing car.

2.4.3 Comparison with Example Region Selection

In our previous work [7], genetic programming was applied on a whole training
image, not on carefully selected regions of the training image, to learn composite
operators for object detection. The genetic programming running on a whole
image is called image GP and the genetic programming of this chapter is called
region GP. The differences between the method presented here and that in [7]
are:

1) Unlike [7] where image GP is used during training, region GP runs on
carefully selected region(s) in this chapter to reduce the training time.

2) Only the first mutation type in subsection 2.3.2 and only the first seven
primitive feature images are used in [7]. With more mutation types and
more primitive feature images used, the diversity of the composite
operator population can be further increased.

The experimental results on REAL SAR images in [7] are reported for the
purpose of comparison. The parameters are: population size (100), the number of
generations (100), the fitness threshold value (1.0), the crossover rate (0.6), the
mutation rate (0.1), the maximum size (number of internal node) of composite
operator (30), and the segmentation threshold (0). In each experiment, GP is
invoked ten times with the same parameters. The experimental results from one
run and the average performance of ten runs are reported in Table 2.5. We select
the run in which GP finds the best composite operator among the composite
operators found in all ten runs to report. The numbers in the parenthesis in the
“fop” columns are the fitness values of the best composite operators on the testing
SAR images.

 28

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

Road extraction: Figure 2.1(a) shows the training image and Figure 2.8(a), (d)
show the testing images. The generational GP is used to generate a composite
operator to extract the road. The fitness value of the best composite operator in
the initial population is 0.47 and the population fitness value is 0.19. The fitness
value of the best composite operator in the final population is 0.92 and the
population fitness value is 0.89. Figure 2.29(a) shows the output image of the

Table 2.5. The performance of genetic programming on various examples of SAR images. (fop =
fitness of the best composite operator, fp = fitness of population, *: indicate fitness on training
images, finitial = fitness in the initial generation, ffinal = fitness in the final population)

Road Lake River Field

fop fp fop fp fop fp fop fp

finitial 0.47 0.19 0.65 0.42 0.43 0.21 0.62 0.44

ffinal
0.92*
(0.92,
0.89) 0.89

0.93*
(0.92

) 0.92
0.74*

(0.84) 0.68

0.87*
(0.68

) 0.86
Ave.
finitial 0.47 0.18 0.73 0.39 0.37 0.11 0.65 0.41
Ave.
ffinal 0.81 0.76 0.92 0.87 0.68 0.58 0.84 0.77

best composite operator in the final population and Figure 2.29(b) shows the
extracted ROI. The composite operator obtained in the above training is applied
to the two testing SAR images. Figure 2.29(c) and (d) show the output image of
the composite operator and the ROI extracted from Figure 2.8(a). The fitness
value of the extracted ROI is 0.92. Figure 2.29(e) and (f) show the output image
of the composite operator and the ROI extracted from Figure 2.8(d). The fitness
value of the extracted ROI is 0.89.

(b) ROI
extracted

from Figure
2.1(a)

(f) ROI
extracted

from Figure
2.8(d)

(e)
composite

feature
image

(d) ROI
extracted

from Figure
2.8(a)

(c)
composite

feature
image

(a)
composite

feature
image

Figure 2.29. Results on SAR images containing road.

Lake extraction: Figure 2.9(a) shows the training image and Figure 2.10(a)
shows the testing image. The steady-state GP is used to generate composite
operators. The fitness value of the best composite operator in the initial

 29

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

population is 0.65 and the population fitness value is 0.42. The fitness value of the
best composite operator in the final population is 0.93 and the population fitness
value is 0.92. Figure 2.30(a) shows the output image of the best composite
operator in the final population and Figure 2.30(b) shows the extracted ROI. The

composite operator is applied to the testing SAR image. Figure 2.30(c) and (d)
show the output image of the composite operator and the extracted ROI with
fitness value 0.92. In Figure 2.30(a) and (c), pixels in the small dark regions have
very low pixel values (negative values with very large absolute value), making
most pixels of the images appear bright, although some of these pixels have
negative pixel values.

• River extraction: Figure 2.11(a) shows the training image and Figure 2.14(a)
shows the testing image. The steady-state GP is used to generate the composite
operator. The fitness value of the best composite operator in the initial population
is 0.43 and the population fitness value is 0.21. The fitness value of the best
composite operator in the final population is 0.74 and the population fitness value
is 0.68. Figure 2.31(a) shows the output image of the best composite operator in
the final population and Figure 2.31(b) shows the extracted ROI. The composite
operator is applied to the testing image. Figure 2.31(c) and (d) show the output
image of the composite operator and the extracted ROI with fitness value 0.84.
Like Figure 2.30(c), pixels in the small dark region have very low pixel values
(negative values with very large absolute value), thus, making many pixels with
negative pixel values appear bright.

(d) ROI
extracted from
Figure 2.10(a)

(c) composite
feature image

(b) ROI
extracted from
Figure 2.9(a)

(a) composite
feature image

Figure 2.30. Results on SAR images containing lake.

(b) ROI extracted
from Figure

2.11(a)

(d) ROI extracted
from Figure

2.14(a)

(c) composite
feature image

(a) composite
feature image

Figure 2.31. Results on SAR images containing river.

 30

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

• Field extraction: Figure 2.15(a) shows the training image and Figure 2.16(a)
shows the testing image. The generational GP was used to generate composite
operators. The fitness value of the best composite operator in the initial
population is 0.62 and the population fitness value is 0.44. The fitness value of
the best composite operator in the final population is 0.87 and the population

(d) ROI extracted

from Figure
2.16(a)

(a) composite
feature image

(c) composite
feature image

(b) ROI extracted
from Figure

2.15(a)

 Figure 2.32. Results on SAR images containing field.

fitness value is 0.86. Figure 2.32(a) shows the output image of the best composite
operator in the final population and Figure 2.32(b) shows the extracted ROI. The
composite operator is applied to the testing image. Figure 2.32(c) and (d) show
the output image of the composite operator and the extracted ROI with fitness
value 0.68.

From Tables 2.3 and 2.5 and associated figures, it can be seen that if the training
regions are carefully selected and represent the characteristics of training images,
the composite operators learned by GP running on training regions are effective in
extracting the ROIs containing objects and their performances are comparable to
the performances of composite operators learned by GP running on the whole
training images. By running on the selected regions, the training time is greatly
reduced. Table 2.6 shows the average running time of GP running on selected
regions (Region GP) and GP running on the whole training images (Image GP)
over all ten runs and the time is measured in second. Since the number of
generation in [7] is 100 and the number of generation in this chapter is 70, the
running time of “Image GP” in Table 2.6 is the actually running time of “Image
GP” times 0.7. It can be seen that the training time using selected training
region(s) is much shorter than that using a whole image.

 Table 2.6. Average running time of Region GP and Image GP.

 Road Lake River Field

Region GP 6915 2577 7951 3606

Image GP 23608 9120 66476 21485

 31

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

2.4.4 Comparison with a Simple ROI Extraction Algorithm

To perform object detection, composite operators are used to extract ROIs that
contain objects. In order to show the effectiveness of composite operators in ROI
extraction, they are compared with a simple ROI extraction algorithm. The
simple ROI extraction algorithm uses a threshold value to segment the image into
foreground and background. The region consisting of pixels with value greater
than the threshold value is called bright region and its complement is called dark
region. If the bright region has a higher fitness than the dark region, the bright
region is the foreground. Otherwise, the dark region is the foreground. The
foreground is the ROI extracted by this simple algorithm. It is obvious that the
threshold value plays a vital role in the ROI extraction and selecting an
appropriate threshold value is the key to the success of the simple ROI extraction
algorithm.

The performance of composite operators is compared with the simple ROI
extraction algorithm when the best threshold value is used. To find the best
threshold value, every possible threshold value is tried by the algorithm and its
performance is recorded.

• The Simple ROI Extraction Algorithm

1. find the maximum and minimum pixel values of the image.
2. if the maximum pixel value is greater than 1000
3. normalize the pixel values into the range of 0 to 1000. The pixel values

are changed according to the following equation.
 new_pixval = (org_pixval – min_pixval) / (max_pixval – min_pixval) *
1000
where new_pixval and org_pixval are the new and original pixel values,
respectively and min_pixval and max_pixval are the minimum and maxi-
mum pixel values in the original image. After normalization, the minimum
and maximum pixel values are 0 and 1000, respectively.

else
 do not normalize the image.
 endif
4. each pixel value between the minimum and maximum pixel values is used as

the threshold value and its performance in ROI extraction is recorded.
5. select the best threshold value and output its corresponding ROI.

Figure 2.33 shows the ROIs extracted by the simple ROI extraction algorithm
corresponding to the best threshold value. The fitness values of the extracted
ROIs and their corresponding threshold values are shown in Table 2.7.

 32

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

Table 2.7. Fitness values of the extracted ROIs and the corresponding threshold values.

 Figure 2.33 (a) Figure 2.33 (b) Figure 2.33 (c) Figure 2.33 (d)
Fitness 0.39 0.45 0.50 0.72

Threshold 24 32 29 36
 Figure 2.33 (e) Figure 2.33 (f) Figure 2.33 (g) Figure 2.33 (h)

Fitness 0.81 0.31 0.55 0.63
Threshold 24 34 38 112

 Figure 2.33 (i) Figure 2.33 (j) Figure 2.33 (k) Figure 2.33 (l)
Fitness 0.53 0.62 0.58 0.82

Threshold 128 129 107 95
 Figure 2.33 (m) Figure 2.33 (n) Figure 2.33 (o) Figure 2.33 (p) Figure 2.33 (q)

Fitness 0.83 0.79 0.84 0.38 0.34
Threshold 94 95 95 113 126

(o) person (n) person (m) person(l) person

(k) T72
tank

(j) T72
tank

(i) field
vs. grass

(h) field
vs. grass

(g) river
vs. field

(f) river vs.
field

(e) lake vs. grass(d) lake vs. field(c) paved road vs.
grass

(b) unpaved road
vs. field

(a) paved road
vs. field

(q) car (p) car
Figure 2.33. ROI extracted by the simple ROI extraction algorithm.

 33

Chapter 2: Learning Composite Features for Object Detection Using Genetic Programming

 34

To extract ROIs from SAR and IR images, the original SAR and IR images are
used by the simple ROI extraction algorithm; to extract ROIs from RGB color
images, the color images are first converted into gray intensity images and the
simple ROI extraction algorithm operates on the converted gray images. From
Figure 2.33 and Table 2.7, it is obvious that the composite operators learned by

 Table 2.8. Average running time of the composite operators and the simple ROI extraction
algorithm.

 Road Lake River Field Tank Person Car
Composite
operator 5 15 33 8 3 1 2

Simple ROI
exaction algorithm 38 25.5 68.5 37.5 26 4.8 5.5

GP are more effective in ROI extraction. Actually, its performance is better than
the best performance of the simple ROI extraction algorithm. Table 2.8 shows the
average running time of the composite operators and the simple ROI extraction
algorithm in extracting ROIs from training and testing images. The time is
measured in seconds. From Table 2.8, it is obvious that the composite operators
are more efficient.

2.5 Summary
In this chapter, the efficacy of genetic programming in synthesizing composite
operators and composite features for object detection is investigated. The
experimental results show that the primitive operators and primitive features
defined are effective. GP can synthesize effective composite operators for object
detection by running on the carefully selected training regions of a training image
and the synthesized composite operators can be applied to the whole training
image and other similar testing images. No significant difference is found
between generational genetic programming and steady-state genetic
programming. GP has a well-known code bloat problem. Controlling code bloat
due to the limited computational resources inevitably restricts the search
efficiency of GP. How to reach the balance point between these two conflicting
factors is critical in the implementation of GP. In chapter 3, this problem will be
addressed by designing a new fitness function based on minimum description
length (MDL) principle to incorporate the size of a composite operator into the
evaluation process. Also, this work will be extended by discovering features
within the regions of interest for automated object recognition in chapters 4 and 5.

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 35

Chapter 3

Improving Efficiency of Genetic
Programming for Object Detection

In chapter 2, the efficacy of genetic programming in learning composite features
for object detection is studied. The motivation for using GP is to overcome the
human experts’ limitation of considering only a very limited number of
conventional combinations of primitive features. Chapter 2 shows that GP is an
effective way of synthesizing composite features from primitive ones for object
detection. However, genetic programming is very computationally expensive. In
the traditional GP (also called normal GP) used in chapter 2, crossover and
mutation locations are randomly selected, leading to the disruption of the effective
components (subtree in this report) of composite operators, especially at the later
stage of the GP search. This greatly reduces the efficiency of GP. To improve
the efficiency, it is very important for GP to identify and keep the effective
components of composite operators. In this chapter, smart crossover and smart
mutation are proposed to smartly choose crossover and mutation points to prevent
effective components of a composite operator from being disrupted. Also, a
public library is established to save the effective components of composite
operators for later reuse. Finally, a fitness function based on the minimum
description length (MDL) principle is designed to incorporate the size of a
composite operator into the fitness evaluation to address the well-known code
bloat problem of GP without imposing severe restrictions on the GP search. The
GP with smart crossover, smart mutation and MDL-based fitness function is
called smart GP.

3.1 Motivation

Crossover and mutation are two major mechanisms employed by GP to search the
composite operator space. As GP proceeds, effective components are generated.
The power of crossover lies in the fact that by swapping sub-trees between two
effective composite operators (parents), the effective components (sub-trees) in
these two parents can be assembled together into child composite operators
(offspring) and the new offspring may be better than both parents. However,

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 36

although crossover can assemble good components to yield better offspring, it is
also a destructive force in the sense that it can disrupt good components due to the
random selection of crossover points. When the search begins, since the initial
population is randomly generated, it is unlikely that a composite operator contains
good, especially large good, components and the probability of crossover
breaking up a good component is small. At this time, crossover is a constructive
force and the fitness of a composite operator is increased. As search proceeds,
small good components are generated and assembled into larger and larger good
components. When more and more composite operators contain large good
components to achieve high fitness, the good component accounts for a large
portion of a composite operator and the composite operator becomes more and
more fragile because the good components are more prone to being broken up by
subsequent crossover due to the random selection of crossover point. The
crossover can damage the fitness of a composite operator in ways other than
disrupting good components. Sometimes, a good component is moved into an
inhospitable context, that is, the crossover inserts a good component into a
composite operator that does not use the good component in any useful way or
other nodes of the composite operator cancel out the effect of the good
component. According to [2], crossover has an overwhelmingly negative effect
on the fitness of the offspring from crossover, especially in the later stage of GP
search. Mutation is introduced to maintain the diversity of population; since a
serious weakness of evolutionary algorithms is that the population recombined
repeatedly will develop uniformity sooner or later [2]. However, in the later stage
of GP search when more and more composite operators contain large good
components, the random selection of mutation point leads to the high probability
of disrupting good components and makes mutation a destructive force. When
both crossover and mutation become negative factors in the GP search, it is very
unlikely that better composite operators will be generated. To improve the
efficiency and effectiveness of GP, it is highly desired that good components can
be identified and kept from destructive crossover and mutation operations and
stored in a public library for later reuse. These components are treated as atomic
terminals and are directly inserted into composite operators as a whole when the
mutations are performed or during initialization.

GP has a well-known code bloat problem in which the sizes of individuals
become larger and larger. In this report, the individuals are composite operators
represented by binary trees. In normal GP, crossover is performed by swapping
the sub-trees rooted at the nodes randomly selected as crossover points. It is easy
to see that the size of one offspring (i.e., the number of nodes in the binary tree
representing the offspring) may be greater than both parents if crossover is
performed in this simple way. If we do not control the sizes of composite
operators, they will become larger and larger as GP proceeds. This problem must
be addressed, since when the size becomes too large, it takes a long time to
execute a composite operator, greatly reducing the speed of GP. Large-size

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 37

composite operators may overfit training data by approximating the noises in
images. Although the result on the training image is very good, the performance
on unseen testing images may be bad. Also, large composite operators take up a
lot of computer memory. Due to the limited computer resources and for the
running speed of GP, usually in normal GP, a limit on the size of composite
operators is established when performing crossover or mutation. If the size of an
offspring exceeds the maximum size allowed, the crossover operation is
performed again until the sizes of both offspring are within the limit. Although
this simple method prevents the code bloat, the hard size limit may greatly restrict
the search performed by GP, since after randomly selecting a crossover point in
one composite operator, GP cannot select some nodes of the other composite
operator as crossover point in order to guarantee that both offspring won’t exceed
the size limit. However, restricting the search greatly reduces the efficiency of
GP, making it less likely to find good composite operators. One may suggest that
after two composite operators are selected, GP performs crossover twice and each
time keeps the offspring of smaller size. This method can enforce the size limit
and prevent the size of offspring composite operators from growing large, but GP
now only searches the space of these small composite operators. With a small
number of nodes, a composite operator may not capture the characteristics of the
objects to be detected. How to avoid restricting the GP search while at the same
time preventing code bloat is crucial to the success of GP and is still a subject of
research. The key is to find a balance point between these two conflicting factors.
In this chapter, a fitness function is designed based on minimum description
length (MDL) principle [12] to take the size of a composite operator into the
fitness evaluation process. According to MDL principle, large composite
operators effective on training regions may not have good fitness. With the new
MDL-based fitness function, we can take off the restriction on the selection of
crossover points while preventing the composite operator from growing too large,
since these large composite operators don’t have high fitness and will be culled
out by selection.

3.2 Related Research
To improve the efficiency of GP, Tackett [13] devises a method called brood
recombination to reduce the destructive effect of crossover. In this method, when
crossover is performed, many offspring are generated from two parents and only
the best two offspring are kept. D’haeseleer [14] devises strong context
preserving crossover (SCPC) to preserve the context. SCPC only permits
crossover between nodes that occupied exactly the same position in the two
parents. He finds modest improvement in results by mixing regular crossover and
SCPC. Smith [15] proposes a conjugation operator for GP to transfer genetic
information from one individual to another. In his conjugation method, the parent
with higher fitness becomes the donor and the other with lower fitness becomes
the recipient. The conjugation operator is different from crossover and it

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 38

simulates one of the ways in which individuals exchange genetic materials in
nature. Ito et al. [16] propose a depth-dependent crossover for GP in which the
depth selection ratio is varied according to the depth of a node. A node closer to
the root node of the tree has a better chance of being selected as a crossover point
to lower the chance of disrupting small good components near leaves. Their
experimental results show the superiority of the depth-dependent crossover to the
random crossover in which crossover points are randomly selected. Bhanu and
Lin [17] propose smart crossover and mutation operators to identify and keep the
good components of composite operators. Their initial experiments show that
with smart GP operators, GP can search the composite operator space more
efficiently.

Unlike the work of Ito [16] that used only the syntax of a tree (the depth of a
node), the smart crossover and smart mutation proposed in this chapter evaluate
the performance of each node to determine the interactions among them and use
the fitness values of the nodes to determine crossover and mutation points. Also,
unlike my previous work [17], a public library is introduced to keep the good
components for later reuse and more types of mutations are added to increase the
population diversity. Nine more primitive feature images are included to build
composite operators. To reduce the training time, the training in this chapter is
performed on the selected regions of training images, not the whole images as in
the previous work. More importantly, a new MDL-based fitness function is
designed to reach a balance point between conflicting factors of code bloat and
less restriction on the GP search.

3.3 MDL-based fitness function
Fitness function plays an important role in the GP search. It determines the
direction and efficiency of GP search. Driven by a good fitness function, GP can
generate effective composite operators more quickly. One important question in
the synthesis of composite operator is to determine the appropriate size of
composite operators to prevent overfitting while at the same time capture the
characteristics of objects. With little knowledge on the composite operator space
and the object characteristics, it is difficult to answer such questions and this is
one of the reasons GP is applied to explore this vast space. It is shown in chapter
2 that the composite operator space is very large. In order to find effective
composite operators, GP must search actively. To address the well-known code
bloat problem and prevent severe restriction on the GP search, an MDL-based
fitness function is designed to incorporate the composite operator size into the
fitness evaluation process. The fitness of a composite operator is defined as the
sum of description length of the composite operator and the description of the
segmented training regions with respect to this composite operator as a predictor
for the label (object or background) of each pixel in the training regions. Here,
both lengths are measured in bits and the details of the coding techniques are
relevant. The trade-off between the simplicity and complexity of a composite

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 39

operator is that if the size of a composite operator is too small, it may not capture
the characteristics of the objects to be detected, on the other hand, if the size is too
large, the composite operator may overfit the training image, thus performing
badly on unseen testing images. With the MDL-based fitness function, the
composite operator with the minimum combined description length of both the
operator itself and image-to-operator error is the best composite operator and may
perform best on unseen testing images.

Based on the minimum description length principle, the following fitness function
is proposed for GP to maximize:

F(COi) = - (r×log (Npo) ×Size(COi) + (1 – r) × (no + nb) ×(log(Wim)+log(Him))

 (3.1)

where COi is the ith composite operator in the population, Npo is the number of
primitive operators available for GP to synthesize composite operators, Size(COi)
is the size of the composite operator which is the number of nodes in the binary
tree representing it, no and nb are the number of object and background pixels
misclassified and Wim and Him are the width and height of the training image and r
is a parameter determining the relative importance of the composite operator size
and the detection rate, which is 0.7 in this chapter.

We now give a brief explanation of this fitness function. Suppose a sender
and a receiver both have the training image and the training regions and they agree
in advance that composite operators can be use to locate the object in an image,
that is, to determine the label (object or background) of each pixel in training
regions. But only the sender knows the ground truth (the label of each pixel).
Now, the sender wants to tell the receiver which pixels belong to the object and
which pixels belong to the background. One simple approach to do this is to send
a bit sequence of n (n is the number of pixels in the training regions) bits where 1
represents an object pixel and 0 represents a background pixel, provided that both
the sender and receiver know the order of the training regions and they agree that
the pixels are scanned in the top-to-bottom and left-to-right fashion. However, n
is usually very large, thus the communication burden is heavy. To reduce the
number of bits to be transmitted, the sender can send the composite operator to the
receiver. Then the receiver applies the composite operator on the training regions
to get segmented training regions. When sending the composite operator, the
sender can send its nodes in a pre-traversal order. Given Npo primitive operators
(include primitive feature images), log(Npo) is needed to encode each node. Thus
the cost of sending a composite operator is log (Npo) ×Size(COi). However, some
pixels may be misclassified by the composite operator. In order for the receiver to
get the truth, the sender needs to tell the receiver which pixels are misclassified.
Each pixel is represented by its coordinate in the image. If the width and height of
an image are Wim and Him respectively, then log(Wim)+log(Him) bits are needed to
encode each pixel. Thus the cost of sending the misclassified pixels is (no + nb)

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 40

×(log(Wim)+log(Him)). If the composite operators are very effective and its size is
not too large, then only few pixels are misclassified and the number of bits to send
is much smaller than n.

In chapter 2, the fitness function is defined as n(G∩G′) / n(G ∪ G′), where G and
G′ are foregrounds in the ground truth image and the resultant image of a
composite operator respectively and n(X) denotes the number of pixels in the
intersection of region X and the training regions. It measures how the ground truth
and the detection results are overlapped. In this chapter, this measure is called the
goodness of a composite operator. It is not used to drive GP, but only used to
measure the effectiveness of a composite operator.

3.4 Technical Approach

• Primitive feature images and operators: The primitive feature images and
primitive operators are the same as those used in chapter 2. There are 16
primitive feature images: the original image (0), mean (1–3), deviation (4–6),
maximum (7–9), minimum (10–12) and median (13–15) images obtained by
applying templates of sizes 3×3, 5×5 and 7×7. 17 primitive operators are ADD,
SUB, MUL, DIV, MAX2, MIN2, ADDC, SUBC, MULC, DIVC, SQRT, LOG,
MAX, MIN, MED, MEAN and STDV.

• Parameters and termination: The key parameters are the population size M,
the number of generation N, the crossover rate, the mutation rate and the
goodness threshold. The GP stops whenever it finishes the pre-specified number
of generations or whenever the best composite operator in the population has
goodness value greater than the goodness threshold.

• Selection, crossover and mutation: The selection operation selects
composite operators from the current population to let them survive into next
generation. As in chapter 2, tournament selection is used.

In normal GP, crossover and mutation points are selected at random. Due to
the random selection, crossover and mutation become destructive at the later stage
of GP search when composite operators contain large effective components. To
avoid the above problem, smart crossover and smart mutation are proposed to
identify and keep the effective components. In smart GP, the output image of
each node is evaluated and its fitness value is recorded. The fitness of an edge is
defined as the fitness difference between the parent node and the child node
linked by the edge. An Edge is classified as good edge if its fitness is positive.
Otherwise, it is a bad edge.

In the smart crossover, all the bad edges are identified and one of them is selected
by random selection or roulette selection (based on the fitness of the bad edges)
invoked with equal probability. The child node of the selected bad edge is the
crossover point and the subtree rooted at the crossover points are swapped

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 41

between parents. If a composite operator has no bad edge, the crossover point is
randomly selected.

A public library is established to store good components for later reuse by smart
mutation. The larger the library, the more effective components can be kept for
later reuse, but the likelihood of each effective component being reused is
reduced. In this chapter, the public library stores 100 good components.

In the smart mutation, mutation point is the parent or child node of a bad edge or a
bad node whose goodness value is below the average goodness value of all the
nodes. The mutation point is selected among those qualified nodes at random.
There are four smart mutations invoked with equal probability:

(a) select the parent node of a bad edge as mutation point. If the parent node
has only one child, the parent is deleted and the child node is linked to the
grand parent node (parent node of the parent node), if no grand parent
node exists, the child becomes the root node; if the parent node has two
children, the parent node and the sub-tree rooted at the child with smaller
fitness value are deleted and the other child is linked directly to the grand
parent node, if no grand parent node exists, the child becomes the root
node;

(b) select the parent a node of a bad edge as mutation point and replace the
primitive operator stored in the node with another primitive operator with
the same number of input as the replaced one;

(c) select two subtrees whose roots are the child nodes of two bad edges
within the composite operator and swap them. Of course, neither of the
two sub trees can be a sub-tree of the other;

(d) select a bad node as mutation point. Replace the subtree rooted at the
node with another randomly generated tree or with an effective component
randomly selected from the public library.

The first two mutations delete a node that cancel the effect of its child or children;
the third mutation moves two components away from unfriendly contexts that
cancel their effects and inserts them into new contexts; the fourth mutation deletes
a bad component and replace it with a new component or a good one stored in the
public library.

ε-greedy policy is used to determine whether a smart operator (smart crossover or
mutation) or a random operator (random crossover or mutation) is used. The
smart operator and random operator are invoked with probability ε and 1 - ε,
respectively. In this chapter, ε is a variable and can be adjusted by the following
formula:

ε = εmin + (εmax - εmin) ×Goodpopu (3.2)

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 42

where εmin is 0.5 and εmax is 0.9, Goodpopu is population goodness (the average
goodness of the composite operators in the population). The reason for the using
of random operators is that smart operators bias the selection of crossover and
mutation points. They avoid disrupting effective components, but at the same
time they restrict the GP search. According to our experiments, restricting the
search reduces the efficiency of GP. At the beginning when the population is
initialized, few composite operators contain effective components. At this time,
GP should search actively to generate effective components and assemble them
together. It is harmful to apply smart operators at the early stage of GP search
since they restrict the search. Only after some time when the effective
components are gathered in composite operators, smart operators should be
applied to identify the effective components to avoid disrupting them and keep
them in a public library for later reuse. So, in this report, smart operators are not
used in the first 20 generations. In the last 50 generations, smart operators are
applied with higher and higher probability as the population goodness becomes
larger and larger.

• Generational GP and smart GP: As in chapter 2, generational genetic
programming and steady-state genetic programming are used to synthesize
composite operators. The difference is that in smart GP, MDL-based fitness
function is used, smart GP crossover and smart mutation are invoked with
probability determined by ε-greedy policy and a public library is set up to store
the effective components of composite operators.

Generational Genetic Programming:

0. randomly generate populations of size M and evaluate each composite opera-
tor in P.

1. for gen = 1 to N do // N is the number of generation
2. keep the best composite operator in P.
3. perform crossover on the composite operators in P until crossover rate is

satisfied and keep all the offspring from crossover. if gen < 20 use random
crossover only; otherwise smart crossover and random crossover are in-
voked according to ε-greedy policy.

4. perform mutation on the composite operators in P and the offspring from
crossover with the probability of mutation rate. if gen < 20 use random
mutation only; otherwise smart mutation and random mutation are invoked
according to ε-greedy policy.

5. perform selection on P to select some composite operators. The number of
selected composite operators must be M minus the number of composite
operators from crossover.

6. combine the composite operators from crossover with those from P to get a
new population P’.

7. evaluate offspring from crossover and the mutated composite operators.

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 43

8. let the best composite operator from P replace the worst composite opera-
tor in P’ and let P = P’.

9. update the value of ε according to equation (3.2) and store good compo-
nents of composite operators in the public library.

10. if the goodness of the best composite operator in P is above the goodness
threshold then

11. stop.
 endif
12. check each composite operator in P and use its best component to replace

it.
endfor // loop 1

Steady-state Genetic Programming:

0. randomly generate population P of size M and evaluate composite operators
in P.
1. for gen = 1 to N do // N is the number of generation
2. keep the best composite operator in P.
3. repeat
4. select 2 composite operators from P based on their fitness values for

crossover.
5. select 2 composite operators with the lowest fitness values in P for re-

placement.
6. perform crossover operation and let the 2 offspring replace the 2 com-

posite operators selected for replacement. if gen < 20 use random cross-
over only; otherwise smart crossover and random crossover are invoked
according to ε-greedy policy.

7. execute the 2 offspring and evaluate their fitness values.
8. until crossover rate is met.
9. perform mutation on each composite operator with probability of mutation

rate. if gen < 20 use random mutation only; otherwise smart mutation and
random mutation are invoked according to ε-greedy policy.

10. execute and evaluate mutated composite operators.
11. after crossover and mutation, a new population P′ is generated.
12. let the best composite operator of population P replace the worst composite

operator in P’ and let P = P’.
13. update the value of ε according to equation (3.2) and store good compo-

nents of composite operators in the public library.
14. if the goodness of the best composite operator in P is above goodness

threshold value then
15. stop.
 endif
16. check each composite operator in P and use its best component to replace
it.

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 44

 endfor // loop 1

3.5 Experiments

Experiments are performed with real SAR images of sizes 128×128 and 80×80
(tank images). To synthesize composite operators, GP is applied to a region (or
regions) carefully selected from the training image to reduce the training time.
The generated composite operator is then applied to the whole training image and
other testing images. For the purpose of objective comparison, normal GP (GP
with random crossover and random mutation) and smart GP (GP with smart
crossover and smart mutation) are invoked ten times with the same parameters
and training regions in each experiment and only the average performances are
used in comparison. The results from the run in which GP finds the best
composite operator among the best composite operators found in all ten runs are
reported. The parameters are: population size (100), the number of generation
(70), the goodness threshold value (1.0), the crossover rate (0.6), the mutation rate
(0.05), and the segmentation threshold (0). The GP program ran on a Sun Ultra 2
workstation.

3.5.1 Road Extraction
The training image contains horizontal paved road and field, as shown in Figure
3.1(a); two testing images contain unpaved road vs. field and vertical paved road
vs. grass, as shown in Figure 3.7(a) and 3.7(f), respectively. Two training regions
locate from (5, 19) to (50, 119) and from (82, 48) to (126, 124). Figure 3.1(b)
shows the ground truth. The white region corresponds to the road and only the
portion of ground truth in the training regions is used in the fitness evaluation.

The generational GP is used to synthesize a composite operator to detect the road.
For normal GP, the goodness value of the best composite operator in the initial
population is 0.60 and the goodness value of the best composite operator in the
final population is 0.94. Figure 3.1(c) shows the output image of the best
composite operator on the whole training image and Figure 3.1(d) shows the
binary image after segmentation. The goodness value of the extracted ROI is
0.90. For smart GP, the fitness and goodness of the best composite operator in the

(a) paved road
vs. field

(b) ground
truth

(c) feature
image

(normal GP)

(d) ROI
extracted

(normal GP)

Figure 3.1. Training SAR image containing road.

(e) feature
image

(smart GP)

(f) ROI
extracted

(smart GP)

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 45

initial population are −2303.6 and 0.45. The corresponding values in the finial
population are –325.4 and 0.94. Figure 3.1(e) shows the output image of the best
composite operator on the whole training image and Figure 3.1(f) shows the
binary image after segmentation. The goodness value of the extracted ROI is
0.91.

The best composite operator has 18 nodes and its depth is 13. It has three leaf
nodes all containing 7×7 median image, which contains less speckle noises due to
the median filter’s effectiveness in eliminating speckle noises. It is shown in
Figure 3.2, where PFIM15 represents 7×7 median image. Compared to smart GP,
the best composite operator from normal GP has 27 nodes and its depth is 16.

Figure 3.3 shows how the average fitness of the best composite operators and the
average fitness of the populations over all 10 runs change as GP proceeds. Unlike
in chapter 2 where the population fitness approaches the fitness of the best
composite operator as GP proceeds, in Figure 3.3, population fitness is much
lower than that of the best composite operator even at the end of GP search. It is
reasonable, since the selection of crossover points is not restricted by a hard size
limit on composite operators. The difference between the sizes of the composite
operators in the population is large and so are their fitness values. The population
fitness is not important since only the best composite operator is used in testing.

If GP finds one effective composite operator, the GP learning is successful.
That’s why we don’t compare the population fitness between normal GP and
smart GP. The large difference between the fitness of the best composite operator
and that of the population indicates that the diversity of the population is
maintained during GP search, which is very helpful in preventing premature
convergence.

Ten best composite operators are obtained in the initial and final generations of
ten runs, respectively. Figure 3.4 shows the utility of primitive operators and
primitive feature images in the best composite operators of initial and final
generations. To compute utility, we first compute the total number of each
primitive operator and the total number of each primitive feature image in the 10
best composite operators, then divide them by the total number of internal nodes
and the total number of leaf nodes of these 10 best composite operators,

Figure 3.2. Learned composite operator
tree in LISP notation.

(MAX (MAX (MAX (MAX
(MAX (SUBC (MUL (DIVC
(ADDC (MAX (MAX (MAX
(ADDC PFIM15)))))) (DIV
PFIM15 (STDV PFIM15))))))))) -6000

-4000

-2000

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

fit
n

es
s

best
population

Figure 3.3. Fitness versus generation (road
vs. field).

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 46

respectively. From Figure 3.4(b), it can be seen that MED operator has the most
frequent occurrence in the best composite operators learned by GP.

Figure 3.5 shows the output image of each node of the best composite operator
shown in Figure 3.2. The primitive operators in Figure 3.5 are connected by
arrow. The operator at the tail of an arrow provides input to the operator at the
head of the arrow. After segmenting the output image of a node, we get the ROI

(shown as the white region) extracted by the corresponding subtree rooted at the
node. The extracted ROIs and their fitness values are shown in Figure 3.6. If an
output image has positive pixels only (for example, PFIM15 has positive pixels
only), everything is extracted and the goodness is 0.25. From Figure 3.6, it can be
seen that since the feature image from subtree (DIV PFIM15 (STDV PFIM15))
has no pixel with negative value, it does not affect the ROI extracted from the
feature image output by its parent node MUL. This branch is a redundant code of
the composite operator.

The composite operator obtained in the above training is applied to the other two
real SAR images shown in Figure 3.7(a) and 3.7(f). Figure 3.7(b) and 3.7(g)
show the output of the composite operator from normal GP and Figure 3.7(c) and
Figure 3.7(h) show the regions extracted from Figure 3.7(a) and Figure 3.7(f),
respectively. The goodness values of the extracted regions are 0.90 and 0.93.
Figure 3.7(d) and 3.7(j) show the output of the composite operator from smart GP
and Figure 3.7(e) and Figure 3.7(k) show the regions extracted from Figure 3.7(a)
and Figure 3.7(f), respectively. The goodness values of the extracted regions are
0.91 and 0.93. The average running time of the best composite operators from
normal GP on training and testing images is 5 seconds; the corresponding time of
that from smart GP is 2.6 seconds.

0
0.05

0.1
0.15

1 3 5 7 9 11 13 15 17

primitive operator

u
ti

lit
y

0
0.1
0.2
0.3

1 3 5 7 9 11 13 15 17

primitive operator

u
ti

lit
y

(a) Initial (b) final

0
0.05
0.1

0.15
0.2

1 3 5 7 9 11 13 15

primitive feature image

u
ti

lit
y

0
0.1
0.2
0.3
0.4

1 3 5 7 9 11 13 15

primitive feature image

u
ti

lit
y

(c) Initial (d) final

Figure 3.4. Utility of primitive operators and primitive feature images.

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 47

SUBC MUL

DIV

PFIM15

STDV PFIM15

MAX MAX MAX MAX MAX

DIVC ADDC MAX

MAX MAX ADDC PFIM15

Figure 3.5. Feature images output by the nodes of the best composite operator from smart GP.

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 48

MAX (0.91) MAX (0.77) MAX (0.62)MAX (0.70) MAX (0.55)

SUBC
(0.47)

MUL (0.44)

DIV (0.25)

STDV
(0.24)

PFIM15
(0.25)

PFIM15
(0.25)

DIVC
(0.44)

ADDC
(0.14)

MAX (0.25)

MAX
(0.21)

MAX
(0.23)

ADDC
(0.18)

PFIM15
(0.25)

Figure 3.6. ROIs extracted from the output images of the nodes of the best composite
operator from smart GP. (The fitness value is shown for the entire image)

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 49

3.5.2 Lake Extraction
Two SAR images contain lake. The training image, shown in Figure 3.8(a),
contains a lake and field, and the testing image, shown in Figure 3.9(a) contains a
lake and grass. The training region is from (85, 85) to (127, 127). Figure 3.8(b)
shows the ground truth.

The steady-state GP is used to generate composite operators. For normal GP, the
goodness value of the best composite operator in the initial population is 0.62 and
the goodness value of the best composite operator in the final population is 0.99.
Figure 3.8(c) shows the output image of the best composite operator on the whole
training image and Figure 3.8(d) shows the binary image after segmentation. The
goodness value of the extracted ROI is 0.95. For smart GP, the fitness and
goodness of the best composite operator in the initial population are −1585.5 and
0.55. The corresponding values in the finial population are –158.9 and 0.97.
Figure 3.8(e) shows the output image of the best composite operator on the whole

(a) lake vs.
field

(b) ground truth (c) feature
image

(normal GP)

(d) ROI
extracted

(normal GP)

Figure 3.8. Training SAR image containing lake.

(e) feature
image

(smart GP)

(f) ROI
extracted

(smart GP)

(f) paved
road vs. grass

(g) feature
image

(normal GP)

(h) ROI extracted
(normal GP)

Figure 3.7. Testing SAR images containing road.

(j) feature
image

(smart GP)

(k) ROI extracted
(smart GP)

(a) unpaved
road vs. field

(b) feature
image

(normal GP)

(c) ROI extracted
(normal GP)

(d) feature
image

(smart GP)

(e) ROI extracted
(smart GP)

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 50

training image and Figure 3.8(f) shows the binary image after segmentation. The
goodness value of the extracted ROI is 0.94. The composite operator is applied to
the testing image containing a lake and grass. Figure 3.9(b) shows the output of
the composite operator from normal GP and Figure 3.9(c) shows the region
extracted. The goodness value of the region is 0.97. Figure 3.9(d) shows the
output of the composite operator from smart GP and Figure 3.9(e) shows the
region extracted. The goodness value of the region is 0.98. The average running
time of the best composite operators from normal GP on training and testing
images is 15 seconds; the corresponding time of that from smart GP is 1 second.
The sizes of the best composite operators from normal GP and smart GP are 28
and 13, respectively.

3.5.3 River Extraction

Two SAR images contain river and field. Figure 3.10(a) and 3.10(b) show the
original training image and the ground truth provided by the user. The white
region in Figure 3.10(b) corresponds to the river to be extracted. The training
regions are from (68, 31) to (126, 103) and from (2, 8) to (28, 74). The testing
SAR image is shown in Figure 3.13(a).

The steady-state GP is used to generate a composite operator. For normal GP, the
goodness values of the best composite operator in the initial and final populations
are 0.59 and 0.89, respectively. Figure 3.10(c) shows the output image of the best

(a) lake vs.
grass

(b) feature
image

(normal GP)

(c) ROI
extracted

(normal GP)

(d) feature
image

(smart GP)

(e) ROI
extracted

(smart GP)

Figure 3.9. Testing SAR image containing lake.

(a) river vs.
field

(b) ground
truth

(c) feature
image

(normal GP)

(d) ROI
extracted

(normal GP)

Figure 3.10. Training SAR image containing river.

(e) feature
image

(smart GP)

(f) ROI
extracted

(smart GP)

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 51

composite operator on the whole training image and Figure 3.10(d) shows the
binary image after segmentation. The goodness of the extracted ROI is 0.72. For
smart GP, the fitness and goodness of the best composite operator in the initial
population are −2480.8 and 0.23. The corresponding values in the finial
population are –404.6 and 0.90. Figure 3.10(e) shows the output image of the
best composite operator on the whole training image and Figure 3.10(f) shows the
binary image after segmentation. The goodness of the extracted ROI is 0.71. The
best composite operator has 13 nodes and its depth is 12. It has one leaf node
containing 3×3 mean image. Among 13 nodes, seven of them are MED operators
effective in eliminating speckle noises. It is shown in Figure 3.11. Compared to
smart GP, the best composite operator from normal GP has 30 nodes with depth
23. Figure 3.12 shows how the average fitness of the best composite operators
and the average fitness of the populations over all 10 runs change as GP searches
the composite operator space.

The composite operator is applied to the testing image containing a river and
field. Figure 3.13(b) shows the output of the composite operator from normal GP
and Figure 3.13(c) shows the region extracted from Figure 3.13(a). The goodness
of the region is 0.83. Figure 3.13(d) shows the output of the composite operator
from smart GP and Figure 3.13(e) shows the region extracted. The goodness of
the region is 0.86. There are some islands along with the river around them that
are not extracted. The average running time of the best composite operators from

Figure 3.11. Learned composite operator
tree in LISP notation.

(DIVC (SUBC (SUBC (MED
(MED (MIN (MED (MED (MED
(MED (MED (SUBC
PFIM1))))))))))))

Figure 3.12. Fitness versus generation
(river vs. field).

-6000

-4000

-2000

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

fi
tn

es
s

best

population

(a) river vs.
field

(b) feature
image

(normal GP)

(c) ROI
extracted

(normal GP)

(d) feature
image

(smart GP)

(e) ROI
extracted

(smart GP)

Figure 3.13. Testing SAR image containing river.

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 52

normal GP on training and testing images is 33 seconds; the corresponding time
of that from smart GP is 19 seconds.

3.5.4 Field Extraction

Two SAR images contain field and grass. Figure 3.14(a) and 3.14(b) show the
original training image and the ground-truth. The training regions are from (17,
3) to (75, 61) and from (79, 62) to (124, 122). Extracting field from a SAR image
containing field and grass is considered as the most difficult task among the five
experiments, since the grass and field are similar to each other and some small
regions between grasses are actually fields.

The generational GP was used to generate composite operators. For normal GP,
the goodness value of the best composite operator in the initial population is 0.52
and the goodness value of the best composite operator in the final population is
0.78. Figure 3.14(c) shows the output image of the best composite operator on
the whole training image and Figure 3.14(d) shows the binary image after
segmentation. The goodness value of the extracted ROI is 0.88. For smart GP, the
fitness and goodness of the best composite operator in the initial population are
−7936.2 and 0.39. The corresponding values in the finial population are –1999.4
and 0.79. Figure 3.14(e) shows the output image of the best composite operator
on the whole training image and Figure 3.14(f) shows the binary image after
segmentation. The goodness value of the extracted ROI is 0.90.

(a) field vs.
grass

(b) ground
truth

(c) feature
image

(normal GP)

(d) ROI
extracted

(normal GP)

Figure 3.14. Training SAR image containing field.

(e) feature
image

(smart GP)

(f) ROI
extracted

(smart GP)

(a) field vs.
grass

(b) feature
image

(normal GP)

(c) ROI
extracted

(normal GP)

(d) feature
image

(smart GP)

(e) ROI
extracted

(smart GP)

Figure 3.15. Testing SAR image containing field.

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 53

The composite operator is applied to the testing image containing field and grass
shown in Figure 3.15(a). Figure 3.15(b) shows the output of the composite
operator from normal GP and Figure 3.15(c) shows the extracted region with
goodness value 0.81. Figure 3.15(d) shows the output of the composite operator
from smart GP and Figure 3.15(e) shows the extracted region with goodness value
0.84. The average running time of the best composite operators from normal GP
on training and testing images is 8 seconds; the corresponding time of that from
smart GP is 12 seconds. The sizes of the best composite operators from normal
GP and smart GP are 9 and 15, respectively.

3.5.5 Tank Extraction

In this subsection, GP is applied to synthesize features for the detection of
military targets T72 tanks. Their SAR images are taken under different
depression and azimuth angles and the size of the images is 80×80. The training
image contains T72 tank under depression angle 17° and azimuth angle 135°,
which is shown in Figure 3.16(a). The training region is from (19, 17) to (68, 66).
The testing SAR image contains a T72 tank under depression angle 20° and
azimuth angle 225°, which is shown in Figure 3.19(a). The ground-truth is shown
in Figure 3.16(b).

The generational GP is applied to synthesize composite operators for tank
detection. For normal GP, the goodness value of the best composite operator in
the initial population is 0.65 and the goodness value of the best composite
operator in the final population is 0.88. Figure 3.16(c) shows the output image of
the best composite operator on the whole training image and Figure 3.16(d) shows
the binary image after segmentation. The goodness value of the extracted ROI is
0.88. For smart GP, the fitness and goodness of the best composite operator in the
initial population are −807.2 and 0.54. The corresponding values in the finial
population are –190.8 and 0.89. Figure 3.16(e) shows the output image of the
best composite operator on the whole training image and Figure 3.16(f) shows the
binary image after segmentation. The goodness value of the extracted ROI is
0.89. The best composite operator has 5 nodes and its depth is 4. It has one leaf
node containing 3×3 maximum image. Two internal nodes are MED operator,
which is useful in eliminating speckle noises in SAR images. It is shown in

(a) T72 tank (b) ground
truth

(c) feature
image

(normal GP)

(d) ROI
extracted

(normal GP)

Figure 3.16. Training SAR image containing tank.

(e) feature
image

(smart GP)

(f) ROI
extracted

(smart GP)

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 54

Figure 3.17. Compared to smart GP, the best composite operator from normal GP
has 28 nodes and its depth is 17. Figure 3.18 shows how the average fitness of
the best composite operators and the average fitness of the populations over all 10
runs change as GP proceeds.

The composite operator is applied to the testing image containing T72 tank under
depression angle 20° and azimuth angle 225°. Figure 3.19(b) shows the output of
the composite operator from normal GP and Figure 3.19(c) shows the region
corresponding to the tank. The goodness of the extracted ROI is 0.84. Figure
3.19(d) shows the output of the composite operator from smart GP and Figure
3.19(e) shows the region corresponding to the tank. The goodness of the
extracted ROI is 0.84. The average running time of the best composite operators
from normal GP on training and testing images is 3 seconds; the corresponding
time of that from smart GP is 2 seconds. The results show that GP is very much
capable of synthesizing composite operators for military target detection.

3.5.6 Comparison between Normal GP and Smart GP

This subsection compares the performance of smart GP with that of normal GP.
For objective comparison, only the average performance over all ten runs is used
in comparison. Figure 3.20 shows how the average goodness of the best
composites operators improves as normal GP and smart GP proceed. The thick

(a) T72 tank (b) feature
image

(normal GP)

(c) ROI
extracted

(normal GP)

(d) feature
image

(smart GP)

(e) ROI
extracted

(smart GP)

Figure 3.19. Testing SAR image containing tank.

Figure 3.17. Learned composite
operator tree in LISP notation.

(MED (MED (SUBC (DIVC PFIM7))))

Figure 3.18. Fitness versus
generation (T72 tank).

-5000
-4000
-3000
-2000
-1000

0
1000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

fi
tn

es
s

best

population

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 55

line stands for the goodness of smart GP and the thin line stands for the goodness
of normal GP. It shows that smart GP finds good composite operators more
quickly. Table 3.1 shows the average goodness of the best composite operator in
the initial and final populations.

Table 3.1. The average goodness of the best composite operators from normal and smart
GPs.

Normal GP Smart GP
Road Lake River Field Tank Road Lake River Field Tank

Initial 0.47 0.64 0.49 0.54 0.49 0.46 0.54 0.34 0.46 0.41
Final 0.82 0.93 0.82 0.73 0.85 0.88 0.95 0.86 0.75 0.86

Normal GP Smart GP
Road Lake River Field Tank Road Lake River Field Tank

Size 29.4 28.4 27.6 20.2 24.6 24.6 11.8 16.8 14.9 5.7
Training 0.789 0.89 0.583 0.794 0.829 0.858 0.916 0.650 0.839 0.849
Testing 0.620

0.797
0.913 0.754 0.675 0.766 0.831

0.914
0.972 0.836 0.784 0.821

Table 3.2. The average size and performance of the best composite operators from
normal and smart GPs.

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

g
o

o
d

n
es

s smart GP

normal GP

0.5

0.7

0.9

1.1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

g
o

o
d

n
es

s smart GP

normal GP

0.3

0.5

0.7

0.9

0 10 20 30 40 50 60 70

generation

g
o

o
d

n
es

s smart GP

normal GP

0.4
0.5
0.6
0.7
0.8
0.9

0 10 20 30 40 50 60 70

generation

g
o

o
d

n
es

s smart GP

normal GP

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

generation

g
o

o
d

n
es

s smart

normal

(a) road (b) lake

(c) river (d) field (e) tank

Figure 3.20. The average goodness of the best composite operators versus generation.

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 56

Table 3.2 shows the average size of the best composite operators from normal GP
and smart GP. It also shows the average performances of the best composite op-
erators on the whole training image and other testing image(s). It is obvious that
the best composite operators learned by smart GP have better performance and
smaller size. With smaller composite operators, the computational expense dur-
ing testing is greatly reduced.

Table 3.3 shows the average running time of normal GP and smart GP. By
intuition, the running time of smart GP should be much longer than that of normal
GP, since in normal GP, only the output image of the root node is evaluated and
smart GP evaluates the output image of each node of a composite operator.
However, from Table 3.3, it can be seen that the difference between the running
times is not as much as expected. In the experiments with lake and tank images,
the running time of smart GP is much shorter. The reason lies in the code bloat
problem of GP. In normal GP, a maximum size of composite operators (in this
chapter, it is 30) is specified. At the later stage of the GP search, most of the
composite operators have size equal or close to the maximum size allowed. In
smart GP, the MDL-based fitness function takes the size of composite operators
into the fitness evaluation process to avoid specifying a hard size limit. The
difference between the sizes of composite operators is large, even at the later
stage of the GP search. Although a few composite operators have size larger than
the maximum size allowed in normal GP, many of them have size smaller than
the specified size limit. If the maximum size allowed in normal GP is large, it can
be expected that the running time of the normal GP will be longer than that of
smart GP. Also, in the above experiments, the goodness threshold value is set 1.0
to force GP to finish the pre-specified number of generations. If goodness
threshold value is smaller than 1.0, smart GP may run fewer generations, since it
finds effective composite operators more quickly, thus reducing its running time.

3.6 Summary
In this chapter, smart crossover and smart mutation are proposed to improve the
efficiency of genetic programming by identifying the effective components of
composite operators and preventing them from being disrupted. The effective
components are stored in a public library for later reuse. To address the well-
known code bloat problem of GP, a new fitness function based on the minimum
description length is designed to take the size of a composite operator into the

Table 3.3. Average running time of Normal GP and Smart GP.

 Road Lake River Field Tank

Normal GP 6915 2577 7951 3606 2686

Smart GP 10249 770 11035 5251 649

Chapter 3: Improving Efficiency of Genetic Programming for Object Detection

 57

fitness evaluation process. The new fitness function prevents composite operators
from growing too large while at the same time imposing relatively less severe
restrictions on the GP search. With MDL-based fitness function and the smart
operators, GP can learn good composite operators more quickly, improving the
efficiency of GP. Compared to normal GP, the composite operators learned by
smart GP have better performance on the training and testing images and have
smaller size, reducing the computational expenses during testing.

Chapter 4: GA-based Feature Selection for Object Detection

 58

Chapter 4

GA-based Feature Selection for
Object Detection

Automatic detection of potential objects in images is an important problem [3,
19]. A CFAR (constant false alarm rate) detector is commonly used to
“prescreen” a synthetic aperture radar (SAR) image to localize possible object
pixels [19]. Generally, object pixels correspond to bright spots caused by strong
radar return from natural or man-made objects in SAR images. Parts of an image
that are not selected are rejected from further computation. In the next stage of
processing, regions of interest are further examined to distinguish man-made
objects from natural clutter. Finally, a classifier such as a Bayesian classifier, a
template matcher or a model-based recognizer is used to reject man-made clutter.

In chapters 2 and 3, genetic programming is applied to synthesize composite
features from primitive features for object detection. The primitive features used
there are domain-independent and not specific to a kind of imagery. The focus of
this chapter is to select a minimal set of features from 20 available features to
distinguish objects from natural clutter. 10 of these 20 features are simple and
domain-independent features and the other 10 are specifically designed to process
SAR images. The approach is based on a closed loop system involving GA based
feature selection and a Bayesian classifier. GA uses a MDL-based fitness
function that combines the number of features to be used and the error rate of the
classifier. The results are presented using real SAR images. The experimental
results show that the MDL-based fitness function is the most effective in selecting
a minimal set of features to describe the data accurately compared to other three
fitness functions, and the subset of features selected can greatly reduce the
computational cost while at the same time maintaining the desired detection
accuracy.

4.1 Motivation
In general, the goal of feature selection is to find the subset of features that
produces the best object detection and recognition performance and requires the

Chapter 4: GA-based Feature Selection for Object Detection

 59

least computational effort. Feature selection is important to object detection and
recognition systems mainly for three reasons:

First, using more features can increase system complexity, yet it may not always
lead to higher detection/recognition accuracy. Sometimes, many features are
available to a detection/recognition system. However, these features are not
independent and may be correlated. A bad feature may greatly degrade the
performance of a system. Thus, selecting a subset of good features is important.

Second, features are selected by a learning algorithm during the training phase.
The selected features are used as a model to describe the training data. Selecting
many features means a complicated model being used to approximate the training
data. According to minimum description length (MDL) principle, a simple model
is better than a complex model [12]. Since the training data may be corrupted
with a variety of noises, a complex model may overfit the training data and may
be sensitive to noises, leading to bad performance on unseen test data. In this
chapter, GA is used to select as few features as possible to describe the training
data effectively.

Third, using fewer features can reduce the computational cost, which is important
for real-time applications. Also it may lead to better classification accuracy due
to the finite sample size effect.

4.2 Related Research
Genetic algorithms (GAs) are widely used in image processing, pattern
recognition and computer vision [3, 20, 21]. They are used to evolve
morphological probes that sample the multi-resolution images [22], to generate
image filters for target detection [23], to select good parameters of partial shape
matching for occluded object recognition [24], to perform pattern clustering and
classification [25], etc. GAs are also used to automatically determine the relative
importance of many different features and to select a good subset of features
available to the system [26].

Bhanu and Lee [27] present a closed loop image segmentation system, which
incorporates a genetic algorithm to adapt the segmentation process to changes in
image characteristics caused by variable environmental conditions such as time of
day, time of year, clouds, etc. The segmentation problem is formulated as an
optimization problem and the genetic algorithm efficiently searches the
hyperspace of segmentation parameter combinations to determine the parameter
set which maximizes the segmentation quality criteria in terms of edge-border
coincidence, boundary consistency, pixel classification, object overlap and object
contrast. Their experimental results demonstrate that genetic algorithm can
continuously adapt the segmentation process to normal environmental variations
to provide robust performance when interacting with a dynamic environment.
Emmanouilidis et al. [28] discuss the use of multi-criteria genetic algorithms for

Chapter 4: GA-based Feature Selection for Object Detection

 60

feature selection. With multi-criteria fitness functions, genetic algorithm tries to
minimize the number of features selected while maintaining the high
classification accuracy. The algorithm is shown to yield a diverse population of
alternative feature subsets with various accuracy and complexity trade-off. It is
applied to select features for performing classification with fuzzy models and is
evaluated on real-world data sets such as cancer data set in which each data point
has 9 input features and one output label (malignant or benign). Estevez et al.
[29] propose a genetic algorithm for selecting features for neural network
classifiers. Their algorithm is based on a niching method to find and maintain
multiple optima. They also introduce a new mutation operator to speed up the
convergence of the genetic algorithm. Rhee and Lee [30] present an unsupervised
feature selection method using a fuzzy-genetic approach. The method minimizes
a feature evaluation index, which incorporates a weighted distance between a pair
of patterns used to rank the importance of the individual features. A pattern is
represented by a set of features and the task of genetic algorithm is to determine
the weighting coefficients of features in the calculation of weighted distance.
Matsui et al. [31] use genetic algorithm to select the optimal combination of
features to improve the performance of tissue classification neural networks and
apply their method to problems of brain MRI segmentation to classify gray
matter/white matter regions.

Quilan and Rivest [32] explore the use of minimum description length principle
for the construction of decision trees. The MDL defines the best decision tree to
be the one that yields the minimum combined length of the decision tree itself
plus the description of the misclassified data items. Their experimental results
show that the MDL provides a unified framework for both growing and pruning
the decision tree, and these trees seem to compare favorably with those created by
other techniques such as C4 algorithm. Gao et al. [33] use MDL to determine the
best model granularity such as the sampling interval between the adjacent
sampled points along the curve of Chinese characters or the number of nodes in
the hidden layer of a three layer feed-forward neural network. Their experiments
show that in these two quite different settings the theoretical value determined
using MDL coincides with the best value found experimentally. The key point of
their work is that using MDL the optimal granularity of the model parameters can
be computed automatically rather than being tuned manually.

In this chapter, genetic algorithm is used to select a good subset of features used
for object detection in SAR images. The object detection task involves the
selection of a subset of features to discriminate SAR images containing objects
from those containing clutter. The method is a novel combination of genetic
algorithm based optimization of a criterion function that involves classification
error and the number of features that are used for the discrimination of object
from natural clutter in SAR images. The criterion (fitness) function proposed in
this chapter is based on minimum description length principle and it compares
favorably with other three fitness functions. The joint distribution of features is

Chapter 4: GA-based Feature Selection for Object Detection

 61

assumed to follow Gaussian distribution. The criterion function is optimized in a
closed-loop with a Bayesian classifier evaluating the performance of each set of
features. The GA used in feature selection is adaptive in the sense that it can
automatically adapt the parameters such as crossover rate and mutation rate based
on the efficiency of GA search in the feature space. As compared to this work,
the feature selection presented in [19, 34] for target vs. natural clutter
discrimination measures exhaustively the performance of each combination of the
features by the Pd (probability of detection) versus Pfa (probability of false alarm)
plot produced by it. The higher the Pd and the lower the Pfa, the better the
combination of features.

4.3 Technical Approach
The purpose of the genetic algorithm (GA) based feature selection approach
presented in this chapter is to select a set of features to discriminate objects from
natural clutter false alarms in SAR images. The approach includes four stages:
rough object detection, feature extraction from the potential object regions,
feature selection based on the training data and the final discrimination. The first
stage is based on the Lincoln Lab ATR system and the second stage uses some
features (first 10 of the 20 features) used in their system [19, 34, 35]. In the
feature selection stage, GA is used to select a best feature subset, defined as a
particular set of features, which is the best in discriminating the object from the
natural clutter false alarm. The diagram for feature selection is given in Figure
4.1.

4.3.1 Feature Evaluation

Adding more features does not necessarily improve discrimination performance.
An important goal is to choose the best set of features from the discriminating
features that are available. Before we do the feature selection, it is appropriate to
give a set of feature evaluation criteria, which measure the discrimination
capability of each feature or a combination of several features.

Figure 4.1. System diagram for feature selection.

CFAR Detector

Classifier Feature Selection

Feature Extractor

Input SAR
Image

Potential
Object Regions

Extracted
Features

Best Feature
Subset Results

Feedback

Chapter 4: GA-based Feature Selection for Object Detection

 62

• Divergence: Divergence is basically a form of the Kulback-Liebler distance
measure between density functions. If we assume that the object as well as the
natural clutter feature vectors follow the Gaussian distributions respectively, that
is,),(11 ΣuN and),(22 ΣuN , where 1u and 2u are mean values and 1Σ and 2Σ
are covariance matrices, respectively, the divergence can be computed as follows:

(4.1)

One major drawback of the divergence d12 is that it is not easily computed, unless
the Gaussian assumption is employed. For SAR imagery, the Gaussian
assumption itself is in question.

• Scatter Matrices: These criteria are based upon the information related to
the way feature vector samples are scattered in the l-dimensional feature space.
Two kinds of scatter matrices are defined. They are within-class scatter matrix
and between-class scatter matrix. Within-class scatter matrix for M classes is,

∑
=

=
M

i
iiw SPS

1

, where iS is the covariance matrix for class iω and iP is the a priori

probability of class iω . wS matrix measures how feature vector samples are
scattered within each class. Between-class scatter matrix bS is defined

as: ()()∑
=

−−=
M

i

T
iiib PS

1
00 uuuu , where 0u is the global mean vector and iu is

the mean for each class, i = 1, …, M. The between-class scatter matrix measures
how the feature vector samples are scattered between different classes. Based on
the different combinations of these two scatter matrices, a set of class separability

criteria can be derived; one such measure can be defined as:
||
||

w

b

S
S

J = . If the

feature vector samples within each class are scattered compactly and the feature
vector samples from different classes are far away from one another, we expect
the value for J would be high. This also implies that the features we choose have
high discrimination.

• Feature vector evaluation using a classifier: Another method for feature
evaluation depends on a specific classifier. The task of feature selection is to
select or determine a set of features, that when fed into a classifier, will let the
classifier achieve the best performance. So it makes sense to relate the feature
selection procedure with a particular classifier used. During the training time, the
features extracted from the training data are available. What the feature selection
algorithm does is to select a subset of these features and feed them into the
classifier and see the classification result. Then the goodness of each feature
subset is indicated by its classification error rate.

{ } () () ()1 1 1 1
12 1 2 2 1 1 2 1 2 1 2

1 1
2

2 2
Td trace I− − − −= Σ Σ +Σ Σ − + − Σ +Σ −u u u u

Chapter 4: GA-based Feature Selection for Object Detection

 63

4.3.2 Various Criteria for Fitness Functions
GA is used to seek the smallest (or the least costly) subset of features for which
the classifier’s performance does not deteriorate below a certain specified level
[26, 36]. The basic system framework is shown in Figure 4.1.

When the error of a classifier is used to measure the performance, a subset of
features is defined as feasible if the classifier's error rate is below the so-called
feasibility threshold. We search for the smallest subset of features among all
feasible subsets. During the search, each subset can be coded as a d-element bit
string (d is the total number of features). The ith element of the bit string assumes
0 if the ith feature is excluded from the subset and 1 if it is present in the subset.

In order for the GA to select a subset of features, a fitness function must be
defined to evaluate the performance of each subset of features. GA explores the
space of feature subsets to try to find a minimum subset of features with good
classification performance.

4.3.2.1 Fitness Function Based on MDL

In this chapter, the classifier is fixed, which is a Bayesian classifier, but the set of
features that is input into the classifier is a variable. In order to apply MDL to
feature selection, the features selected by GA are viewed as the model used to
describe the training data. Selecting more features means that a more complex
model is used to approximate the data. Although a complex model may have
perfect performance on the training data, it may not be a good model, since it may
be overly sensitive to statistical irregularities and idiosyncrasies of the data and
causes accidental noise to be modeled as well, leading to the poor performance on
the unseen test data.

To fix the above problem, minimum description length principle is used to
prevent the overfitting of the training data by an overly complex model. Roughly
speaking, the MDL states that among all the models approximating the data to or
above certain accuracy, the simplest one is the best one. To restrict the model
from growing too complex while maintaining the description accuracy, the cost of
describing a set of data with respect to a particular model is defined as the sum of
the length of the model and the length of the data when encoded using the model
as a predictor for the data. The description length of data-to-model error is
defined as the combined length of all the data items failed to be described by the
model. GA is used to select the subset of features minimizing the above cost.
Here, both description lengths are measured in bits and the details of the coding
techniques are relevant. The trade-off between simplicity and complexity of both
lengths is that if a model is too simple, it may not capture the characteristics of the
data and lead to increased error-coding length, if a model is too complicated, it
may model the noise and become too sensitive to minor irregularities to give
accurate prediction of unseen data. MDL states that among the given set of
models, the one with the minimum combined description length of both the model

Chapter 4: GA-based Feature Selection for Object Detection

 64

and data-to-model error is the best model and can perform best on the unseen test
data.

Based on MDL, the following fitness function is proposed for GA to maximize:

(4.2)

where ci is a chromosome coding the selected set of features, f is the total number
of features extracted from each training data, k is the number of features selected
(ci has k bits of 1 and f – k bits of 0), n is the total number of data items in the
training set and ne is the number of data items misclassified. It is easy to see that
the fewer the number of features selected and smaller the number of data items
misclassified, the larger the value of fitness function.

We now give a brief explanation of the above fitness function. Suppose a sender
and a receiver both know all the data items and their order in the training set and
also they agree in advance on the feature extractor used to extract the f features
from each data item and the classifier used to classify each data based on the
features extracted. But only the sender knows the label (object or clutter) of each
data item. Now, the sender wants to tell the receiver the label of each data item.
One simple approach to do this is to send a bit sequence of n bits where 1
represents an object and 0 represents a clutter. If n is large, then the
communication burden will be heavy. In order to reduce the number of bits to be
transmitted, in an alternative approach, the sender can tell the receiver which
features can be used to classify the data, since the receiver can extract the features
and apply the classifier on the features extracted to get the label of each data item.
There are a total of f features and log(f) bits are needed to encode the index of
each feature. If k features are selected, k log(f) bits are needed in order to inform
the receiver which features should be extracted. However, some data items may
be misclassified, so the sender needs to tell the receiver which data items are
misclassified so that the receiver can get the correct labels of all the data in the
training set. Since there are a total of n data items, log(n) bits are needed to
encode the index of each data item. If ne data items are misclassified, then
nelog(n) bits are needed to convey to the receiver the indices of these
misclassified data items. If the set of features selected is effective in
discriminating objects from clutters, ne is very small, thus the number of bits
needs to be transmitted is much smaller than n.

4.3.2.2 Other Fitness Functions

Three other fitness functions are also used to drive GA and their performances are
compared with that of the fitness function based on MDL.

In order to define two other fitness functions, we first define the following penalty
function [36]:

(4.3)

() (log() log())i eF c k f n n= − +

exp(() /) 1
()

exp(1) 1
e t m

p e
− −

=
−

Chapter 4: GA-based Feature Selection for Object Detection

 65

where e is the error rate (the number of misclassified data item divided by the
total number of data items in the training set) of the classifier, t is the feasibility
threshold and m is called the “tolerance margin”. In this chapter, t = 0.01 and m =
0.005. It can be seen that if e < t, p(e) is negative and as e approaches zero, p(e)
slowly approaches its minimal value. Note also that p(t) = 0 and p(t + m) = 1.
For greater values of the error rate, this penalty function rises quickly toward
infinity.

The second fitness function is defined as follows:

(4.4)

This fitness function considers only the error rate of the classifier and does not
care about how many features are selected. It can be predicted that this fitness
function may lead to the selection of many features.

The third fitness function takes the complexity of a model, that is the number of
features selected, into consideration. It combines the complexity of the model and
its performance on the training data and is defined as follow:

where γ ranges from 0 to 1 and determines the relative importance of the number
of features selected and the error rate of the classifier. If we want to use fewer
features, we can assign a large value to γ; if we think lower error rate is more
important, we can assign a small value to γ. In the following experiments, γ takes
value 0.1, 0.3 and 0.5.

The fourth fitness function is defined as follows:

(4.6)

where k is the number of features selected by GA and γ ranges from 0 to 1 and is a
parameter that determines the relative importance of the number of feature
selected and the error rate of the classifier.

4.3.3 System Description

4.3.3.1 CFAR Detector

A two-parameter CFAR detector is used as a prescreener to identify potential
objects in the image on the basis of radar amplitude. A guard area around a
potential object pixel is used for the estimation of clutter statistics. The amplitude
of the test pixel is compared with the mean and standard deviation of the clutter
according to the following rule:

() ((1))
2 0i

k
F c eγ γ= − + −

() ()iF c p e= −

)5.4())()1(__()(epfeaturesofnumbercF i γγ −+×−=

Chapter 4: GA-based Feature Selection for Object Detection

 66

(4.7)

where tX is the amplitude of the test pixel, cû is the estimated mean of the clutter
amplitude, cσ̂ is the estimated standard deviation of the clutter amplitude, and

CFARK is a constant threshold value that defines the false-alarm rate.

Only those test pixels whose amplitude is much higher than that of the
surrounding pixels are declared to be object pixels. The higher we set the
threshold value of CFARK , the more a test pixel must stand out from its
background for it to be declared as an object pixel. Because a single object can
produce multiple CFAR detections, the detected pixels are grouped together if
they are within an object-sized neighborhood. The CFAR detection threshold in
the prescreener is set relatively low to obtain a high initial probability of object
detection. It is the responsibility of the discriminator to capture and reject those
escaping clutter false alarms from the prescreener stage. An example SAR image
and the corresponding detection results are shown in Figure 4.2.

4.3.3.2 Feature Extractor

First, an object-sized rectangular template is used to determine the position and
orientation of the detected object [37]. The algorithm slides and rotates the
template until the energy within the template is maximized. Then a set of features
is extracted from the object-sized template or the region of interest. This set of
features is used to discriminate the objects from the natural clutters. First ten
features are the same as those used in [19]. All the features from eleven to twenty
are not used in their work, they are general features used in pattern recognition
and object recognition.

• The standard-deviation feature (feature 1): The standard deviation of the
data within the template is a statistical measurement of the fluctuation of the pixel

ˆ
object , otherwise clutter

ˆ
t c

CFAR

c

X u
K

σ
−

> ⇒

(a) Example SAR image. (b) Detection result.

Figure 4.2. SAR image and the CFAR detection result.

Chapter 4: GA-based Feature Selection for Object Detection

 67

intensities. If we use),(arP to represent the radar intensity in power from range
r and azimuth a, the standard deviation can be calculated as follows:

 where (4.8)

and N is the number of pixels in the region.

Objects usually exhibit much larger standard deviation than natural clutters, as
illustrated by Figure 4.3.

• The fractal dimension feature (feature 2): The fractal dimension of the
pixels in the region of interest provides information about the spatial distribution
of the brightest scatterers of the detected object. It complements the standard-
deviation feature, which depends only on the intensities of the scatterers, not on
their spatial locations.

The first step in applying the fractal-dimension concept to a radar image is to
select an appropriately sized region of interest, and then convert the pixel values
in the region of interest to binary. One method of performing this conversion is to
select the N brightest pixels in the region of interest and convert their values to 1,
while converting the rest of pixel values to 0. Based on these N brightest pixels,
the fractal dimension is defined by using the following formula:

(4.9)

where M1 represents the minimum number of 1-pixel-by-1-pixel boxes that cover
all N brightest pixels in the region of interest (This number is obviously equal to
N) and M2 represents the minimum number of 2-pixel-by-2-pixel boxes required
to cover all N brightest pixels.

The bright pixels for a natural clutter tend to be widely separated, thus produce a
low value for the fractal dimension, while the bright pixels for an object tend to be
closely bunched, thus a high value for the fractal dimension is expected, which is

(b) A typical natural clutter image with
standard deviation 4.5187.

(a) A typical object image with
standard deviation 5.2832.

Figure 4.3. Example of the standard deviation feature.

1 2 1 2log log log log
dim

log1 log2 log2
M M M M− −

= − =
−

∑
∈

=
regionar

arPS
,

2
102)],(log10[

∑
∈

=
regionar

arPS
,

101),(log10

1

2
1

2

−

−
=

N
N
S

S
σ

Chapter 4: GA-based Feature Selection for Object Detection

 68

illustrated by Figure 4.4. Figure 4.4(a) shows an object image. In Figure 4.4(b),
the 50 brightest pixels from the object image are tightly clustered, and 22 2×2-
pixel boxes are needed to cover them, which results in a high fractal dimension of
1.2. Figure 4.4(c) shows a natural clutter image. In Figure 4.4(d), the 50
brightest pixels from this natural clutter are relatively isolated, and 46 2×2-pixel
boxes are needed to cover them, which results in a low fractal dimension of 0.29.

• Weighted-rank fill ratio feature (feature 3): This textual feature measures
the percentage of the total energy contained in the brightest scatterers of a
detected object. The weighted-rank fill ratio is defined as follows:

(4.10)

This feature attempts to exploit the fact that power returns from most objects tend
to be concentrated in a few bright scatters, whereas power returns form natural-
clutter false alarms tend to be more diffuse. The weighted-rank fill ratio values of
the object in Figure 4.3(a) and the clutter in Figure 4.3(b) are 0.3861 and 0.2321
respectively.

• Size-related feature (features 4 - 6): The three size-related features utilize
only the binary image created by the morphological operations on the CFAR
detection result.

1. The mass feature is computed by counting the number of pixels in the
morphological blob.

2. The diameter is the length of the diagonal of the smallest rectangle that
encloses the blob.

3. The square-normalized rotational inertia is the second mechanical moment
of the blob around its center of mass, normalized by the inertia of an equal
mass square.

In the experiments, I find the size features are not effective in scenarios where the
objects are partially occluded or hidden. After the prescreener stage, the size and

(,)

(,)
k brightest pixels

all pixels

P r a

P r a
η =

∑
∑

Figure 4.4. Example of the fractal dimension feature.

Chapter 4: GA-based Feature Selection for Object Detection

 69

the shape of the detected morphological blob can be arbitrary. For the clutter,
there is also no ground to assert that the resulting morphological blob will exhibit
a certain amount of coherence. The experimental results in Figure 4.5 show the
arbitrariness of the morphological blobs for objects as well as clutters.

• The contrast-based features (features 7 - 9): The CFAR statistics is
computed for each pixel in an object-shaped blob to create a CFAR image. Then
the three features can be derived as follows:

1. The maximum CFAR feature is the maximum value of pixels in the CFAR
image contained within an object-sized blob.

2. The mean CFAR feature is the average pixel value of pixels in the CFAR
image taken over an object-shaped blob.

3. The percent bright CFAR feature is the percentage of pixels within an object-
sized blob that exceed a certain CFAR value.

The maximum CFAR feature, the mean CFAR feature and the percent bright
CFAR feature values of the object in Figure 4.3(a) are 55.69, 5.53 and 0.15,
respectively, and these feature values of the clutter in Figure 4.3(b) are 10.32,
2.37 and 0.042, respectively. We can see that CFAR feature values for an object
are much larger than those for a natural clutter false alarm.

• The count feature (feature 10): The count feature is very simple; it counts
the number of pixels that exceeded the threshold T and normalize this value by the
total possible number of pixels in an object blob. The threshold T is set to the

(a) The left-hand side figures represent
the object images and the right-hand
figures represent their corresponding
morphological blobs.

(b) The left-hand side figures represent
the clutter images and the right-hand
figures represent their corresponding
morphological blobs.

Figure 4.5. Examples of the size feature for (a) object and (b) clutter.

Chapter 4: GA-based Feature Selection for Object Detection

 70

quantity corresponding to the 98th percentile of the surrounding clutter. The
count feature values of the object in Figure 4.3(a) and the clutter in Figure 4.3(b)
are 0.6 and 0.1376, respectively. We can see that the count feature value for an
object is much larger than that for a natural clutter false alarm. This makes sense
because the intensity values of the pixels belonging to an object stand out from
the surrounding clutter.

The following ten features (four projection features, three distance features and
three moment features) are common features used in image processing and object
recognition. They are extracted from binary images resulting from the CFAR
detection. In these images, foreground pixels (pixels with value 1) are potential
object pixels.

• Projection features (features 11 – 14): four projection features are extracted
from each binary image:

1. horizontal projection feature: project the foreground pixels on a horizontal
line (x axis of image) and compute the distance between the leftmost point
and the rightmost point.

2. vertical projection feature: project the foreground pixels on a vertical line (y
axis of image) and compute the distance between the uppermost point and the
lowermost point.

3. major diagonal projection feature: project the foreground pixels on the major
diagonal line and compute the distance between the upper leftmost point and
the lower rightmost point.

4. minor diagonal projection feature: project the foreground pixels on the minor
diagonal line and compute the distance between the lower leftmost point and
the upper rightmost point.

The average values of horizontal, vertical, major and minor diagonal projection
features of all the clutter images, I collected, are approximately 60.0, 60.0, 90.0
and 90.0, respectively. Their corresponding values for the object images are 34.5,
29.5, 46.7 and 47.8, respectively. It can be seen that the feature values for the
clutters are larger than those for the objects. This result is reasonable, since the
bright pixels of a natural clutter tend to be widely separated. This has already
been shown by the fractal dimension feature value.

• Distance features (features 15 – 17): three distance features are extracted
from each binary image. Before computing distance features, the centroid of all
the foreground pixels in a binary image is computed first.

1. minimum distance: compute the distance from each foreground pixel to the
centroid and select the minimum one.

2. maximum distance: compute the distance from each foreground pixel to the
centroid and select the maximum one.

Chapter 4: GA-based Feature Selection for Object Detection

 71

3. average distance: compute the distance from each foreground pixel to the
centroid and get the average value of all these distances.

The average values of minimum, maximum and average distance features of all
the clutter images I collected are approximately 40.0, 70.0 and 60.0, respectively.
Their corresponding values of the object images are 3.8, 26.7 and 11.5,
respectively. It can be seen that the feature values for the clutters are larger than
those for the objects. This result is reasonable, since the bright pixels of a natural
clutter tend to be widely separated.

• Moment features (features 18 – 20): three moment features are extracted
from each binary image. All three moments are central moments, so before
computing moment features, the centroid of all the foreground pixels in a binary
image is computed first.

The central moments can be expressed as:

where),(yx is the centroid and p and q are integers.

Moments 220220 , µµµ and are also call horizontal, vertical and diagonal second-
order moment features, respectively. The average values of horizontal, vertical
and diagonal second-order moment features of all the clutter images I collected
are approximately 910.0, 910.0 and 374020.0, respectively. Their corresponding
values of the object images are 80.5, 46.7 and 4021.6, respectively. It can be seen
that the feature values for the clutters are larger than those for the objects. This
result is reasonable, since the bright pixels of a natural clutter tend to be widely
separated.

4.3.3.3 GAs for Feature Selection

The genetic algorithm is an optimization procedure that operates in binary search
spaces (the search space consists of binary strings). A point in the search space is
represented by a finite sequence of 0’s and 1’s, called a chromosome. The
algorithm manipulates a finite set of chromosomes, the population, in a manner
resembling the mechanism of natural evolution. Each chromosome is evaluated
to determine its “fitness,” which determines how likely the chromosome is to
survive and breed into the next generation. The probability of survival is
proportional to the chromosome’s fitness value. Those chromosomes, which have
higher fitness values are given more chances to “reproduce” by the processes of
crossover and mutation. The function of crossover is to mate two parental
chromosomes to produce a pair of offspring chromosomes. In particular, if a
chromosome is represented by a binary string, crossover can be implemented by
randomly choosing a point, called the crossover point, at which two chromosomes
exchange their parts to create two new chromosomes. Mutation randomly

)11.4()()(∫ ∫
∞

∞−

∞

∞−
−−= dxdyyyxx qp

pqµ

Chapter 4: GA-based Feature Selection for Object Detection

 72

perturbs the bits of a single parent to create a child. This procedure can increase
the diversity of the population. Mutations can be performed by flipping randomly
one or more bits in chromosomes. In this chapter, an adaptive genetic algorithm
is implemented to automatically adapt the parameters such as crossover rate and
mutation rate based on the performance of GA. To be specific, if the fitness value
of the best individual is not improved for 3 or 5 generations in a row, GA will
automatically raise the mutation rate to increase the diversity of the population.
Also, elitism mechanism is adopted such that the best individual (set of features
selected) is copied from generation to generation when performing reproduction.

In this chapter, there are 20 features as described earlier. Each feature is
represented as a bit in the genetic algorithm. There are 220 possible combinations
of these features.

4.4 Experiments
SAR images from MSTAR public data (object and clutter data) are used to
generate 1008 object chips (small SAR images containing object) and 1008 clutter
chips (small SAR images containing clutter) of size 120×120. SAR images that
are downloaded from the website of MIT Lincoln Lab are also used. From these
SAR images, 40 object chips and 40 clutter chips of size 120×120 are generated.
By adding these two sets of images, 1048 object chips and 1048 clutter chips are
obtained. Some of the chips are used in training and the rest are used in testing.
The chips used in training are randomly selected. The GA selects a good subset
of features from the 20 features described previously to classify a SAR image
chip into either an object or a clutter. The CFAR detector is used in the
prescreener stage to detect the potential object regions. Since the ground truth
about the identity of each chip (whether it is an object chip or a clutter chip) is
known, this allows us to construct a set of training data (training object data and
training natural clutter false alarm data) for feature selection. A set of 20 features
is extracted from each potential object region and the feature selection is
performed on the extracted features. Finally in the testing stage the selected
features are used to discriminate the objects from the natural clutter false alarms
in the testing object and clutter chips.

For the GA-based feature selection framework in this report, a Bayesian Classifier
is adopted to classify the training data and the resulting error rate is used as the
feedback into the feature selection algorithm. The size of the population is 100,
the initial crossover rate is 0.8 and the initial mutation rate is 0.01. If the fitness
value of the best individual is not improved for 3 generations in a row, GA
increases the mutation rate by 0.02. The mutation rate is reset to 0.01 when the
fitness of the best individual is increased. In order to reduce the training time, an
error rate threshold ε is set. The GA stops when either the error rate of the best
set of features selected is below the specified threshold ε or the mutation rate is
increased above 0.09.

Chapter 4: GA-based Feature Selection for Object Detection

 73

A series of experiments are carried out to test the efficacy of GA in feature
selection. First, the MDL-based fitness function is used. Then the other three
fitness functions are used. Finally, the performances of these fitness functions are
compared and analyzed. In order to have an objective comparison of various
experiments, the GA is invoked ten times for each experiment with the same set
of parameters and the same set of training chips. Only the average performances
are used for comparison.

4.4.1 MDL-based Fitness Function

Four experiments are performed with this fitness function. In the first experiment,
300 object chips and 300 clutter chips are used in training and 748 object chips
and 748 clutter chips are used in testing, the error rate threshold value ε is 0.002;
in the second experiment, 500 object chips and 500 clutter chips are used in
training and 548 object chips and 548 clutter chips are used in testing, the error
rate threshold value ε is 0.0015; in the third and fourth experiments, 700 object
chips and 700 clutter chips are used in training and 348 object chips and 348
clutter chips are used in testing, the error rate threshold value ε is 0.0015 and
0.0011, respectively. The features selected during training are used for
classification during testing. It is worth noting that the training chip set in the
third and fourth experiments is the superset of that in the second experiment and
the training chip set in the second experiment is the superset of that in the first
experiment. The object and clutter chips used during training are selected at
random.

Table 4.1 shows the experimental results where 300 object and 300 clutter chips
are used in training. GA is invoked 10 times and each row records the
experimental results from the corresponding invocation. The last row records the
average results of 10 runs. The column “Best generation” records the generation
number in which the best set of features is found and the column “Total
generation” shows the total number of generations GA runs. It can be seen that
although the training error rate is 0.003 in each run, different features are selected.
From the testing results, we can observe that sometimes clutter chips are
misclassified as object chips. In some runs, the same number of testing clutter
chips are misclassified, but the clutter chips that are misclassified in each run are
different. The testing results show that GA finds an effective set of features to
discriminate object from clutter. Table 4.2 and Table 4.3 show the experimental
results when 500 object and clutter chips and 700 object and clutter chips are used
in training, respectively. The results in Table 4.2 are very good. On the average,
5.1 features are selected and both the training and testing error rate are very low.
However, the results in Table 4.3 are not good. Although the training and testing
error rates are low, 9.2 features are selected on the average. From Table 4.3, we
can see that GA runs 4.9 generations on the average. It is clear that GA stops
prematurely. The reason for the premature termination is that the error rate
threshold value 0.0015 is high in this case, since there are 700 object chips and

Chapter 4: GA-based Feature Selection for Object Detection

 74

Number of
errors

Number of
errors

Run
No.

Best
Genera-

tion

Total
Genera-

tion

Num-
ber of
Fea-
tures

Features
selected

Train-
ing

error
rate

Ob-
ject

Clut-
ter

Testing
error
rate Ob-

ject
Clut-

ter
1 29 47 4 0100101001

0000000000
0.003 1 1 0.001 0 2

2 9 27 6 0110001011
0000100000

0.003 1 1 0.011 0 16

3 10 28 4 0100001001
0100000000

0.003 1 1 0.011 0 16

4 43 61 4 0000001001
0100100000

0.003 1 1 0.005 0 7

5 19 37 4 0101001001
0000000000

0.003 1 1 0.017 0 25

6 13 31 4 0100001001
1000000000

0.003 1 1 0.007 0 10

7 23 41 4 0100001001
0010000000

0.003 1 1 0.011 0 16

8 6 24 6 0010011011
0000100000

0.003 1 1 0.011 0 16

9 17 35 5 0100001001
0011000000

0.003 1 1 0.003 0 5

10 11 29 5 0100001001
0010100000

0.003 1 1 0.005 0 7

ave 18 36 4.6 0.003 1 1 0.0082 0 12

Table 4.1. Experimental results with 300 training object and clutter chips. (MDL, equation (4.2); ε
= 0.002)

Number of
errors

Number of
errors

Run
No.

Best
generation

Total
generation

Number
of

features

Features
selected

Training
error
rate Object Clutter

Testing
error
rate Object Clutter

1 17 35 5 0100001001
1000100000

0.002 1 1 0.006 0 7

2 13 31 5 0100001001
0000001001

0.002 1 1 0.006 0 7

3 19 38 5 0100001001
0000011000

0.002 1 1 0.006 0 7

4 20 38 5 0100001001
0000011000

0.002 1 1 0.006 0 7

5 10 28 5 0100001001
0010100000

0.002 1 1 0.006 0 7

6 26 44 5 0100001001
1100000000

0.002 1 1 0.003 0 3

7 25 43 5 0100001001
0000010100

0.002 1 1 0.007 0 8

8 9 27 6 0000001011
0000011010

0.002 1 1 0.007 0 8

9 8 26 5 0100001001
0000011000

0.002 1 1 0.006 0 7

10 17 35 5 0001001001
0011000000

0.002 1 1 0.004 0 4

ave 16.4 34.5 5.1 0.002 1 1 0.0057 0 6.5

Table 4.2. Experimental results with 500 training object and clutter chips. (MDL, equation (4.2); ε
= 0.0015)

Chapter 4: GA-based Feature Selection for Object Detection

 75

Number of
errors

Number of
errors

Run
No.

Best
Genera-

tion

Total
Genera-

tion

Num-
ber of
Fea-
tures

Features
selected

Train-
ing

error
rate

Ob-
ject

Clut-
ter

Testing
error
rate Ob-

ject
Clut-

er
1 10 28 6 0001001001

1000001010
0.0014 1 1 0.004 0 3

2 19 37 5 0100001001
0000001010

0.0014 1 1 0.012 0 8

3 17 35 5 0100001001
0010100000

0.0014 1 1 0.01 0 7

4 16 34 6 0001011001
0010001000

0.0014 1 1 0.006 0 4

5 16 34 5 0100001001
0000011000

0.0014 1 1 0.01 0 7

6 19 37 5 0100001001
0010100000

0.0014 1 1 0.01 0 7

7 10 28 5 0100001001
0000010100

0.0014 1 1 0.01 0 7

8 15 33 5 0100001001
0000011000

0.0014 1 1 0.01 0 7

9 10 28 6 0100011001
1000010000

0.0014 1 1 0.007 0 5

10 23 41 5 0100001001
0000001001

0.0014 1 1 0.01 0 7

ave 15.5 33.5 5.3 0.0014 1 1 0.0089 0 6.1

Table 4.4. Experimental results with 700 training object and clutter chips. (MDL, equation
(4.2); ε = 0.0011)

Number of
errors

Number of
errors

Run
No.

Best
Genera-

tion

Total
Genera-

tion

Number
of

features

Features
selected

Train-
ing

error
rate

Ob-
ject

Clut-
ter

Testing
error
rate Ob-

ject
Clut-

ter
1 8 8 9 0101101001

1010001001
0.0014 1 1 0.006 0 4

2 9 9 10 1101001001
1010101010

0.0014 1 1 0.001 0 1

3 7 7 7 0000001011
0100101010

0.0014 1 1 0.012 0 8

4 2 2 10 1101001001
0110011010

0.0014 1 1 0.001 0 1

5 5 5 8 0100001001
0011111000

0.0014 1 1 0.007 0 5

6 2 2 7 1000011011
0100001000

0.0014 1 1 0.012 0 8

7 5 5 10 1101001001
0110101100

0.0014 1 1 0.001 0 1

8 3 3 10 1100101011
0101010001

0.0014 1 1 0.003 0 2

9 4 4 11 1101011001
1010111000

0.0014 1 1 0.001 0 1

10 4 4 10 1101001001
0011111000

0.0014 1 1 0.001 0 1

ave 4.9 4.9 9.2 0.0014 1 1 0.0045 0 3.2

Table 4.3. Experimental results with 700 training object and clutter chips. (MDL, equation (4.2); ε
= 0.0015)

Chapter 4: GA-based Feature Selection for Object Detection

 76

700 clutter chips. In order to force GA to explore the search space, the error rate
threshold value is lowered to 0.0011 and the results are shown in Table 4.4.
These results are much better than those in Table 4.3. Only 5.3 features are
selected on the average, although the average testing error rate is almost doubled.
Considering both the test error rate and the number of features selected, the first
run in Tables 4.1 and 4.4, and the sixth run in Table 4.2 yield the best results.
Figure 4.6 shows how fitness changes as GA searches the feature subset space
during these runs; Figure 4.7 shows how training error rate changes and Figure
4.8 shows how the number of features selected changes.

From the above experiments, we can see that the MDL-based fitness function and
adaptive GA are very efficient in feature selection. Only 4 to 6 features are
selected on the average while the detection accuracy is kept high.

(a) 300 training object
and clutter chips.

(b) 500 training object
and clutter chips.

(c) 700 training object
and clutter chips.

Figure 4.6. Fitness values vs. generation number.

-75
-65
-55
-45
-35
-25

0 10 20 30 40 50

generation

fit
n

es
s

-90
-80
-70
-60
-50
-40
-30
-20

0 5 10 15 20 25 30 35 40 45

generation

fi
tn

es
s

-105
-95
-85
-75
-65
-55
-45
-35
-25

0 5 10 15 20 25 30

generation

fit
n

es
s

(a) 300 training object and
clutter chips.

(b) 500 training object and
clutter chips.

(c) 700 training object
and clutter chips.

Figure 4.7. Error rates vs. generation number.

0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0 10 20 30 40 50

generation

er
ro

r
ra

te

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

0 5 10 15 20 25 30 35 40 45

generation

er
ro

r
ra

te

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

0 5 10 15 20 25 30

generation

er
ro

r
ra

te

Chapter 4: GA-based Feature Selection for Object Detection

 77

4.4.2 Other Fitness Functions

For the purpose of objective comparison, the training chips in the following
experiments are the same as those in the second experiment above. 500 object
chips and 500 clutter chips are used in training and 548 object chips and 548
clutter chips are used in testing.

First, function (4.4) is used as the fitness function and GA is invoked 10 times.
The error rate threshold value is 0.0015. Table 4.5 shows the experimental
results. This function is only dependent on the error rate, so GA found a set of
features with very low error rate quickly. The selected features are shown by the
“Number of features” and “Features selected” columns. However, since the
number of features is not taken into consideration by the fitness function, many
features are selected. More than 10 features are selected on the average over 10
runs.

Next, function (4.5) is used as the fitness function. Three experiments are
performed with this function, and the values of γ are 0.1, 0.3 and 0.5 in these three
experiments respectively. The error rate threshold is 0.0015. Since this function
considers the number of features selected, you can imagine that few features will
be selected. Tables 4.6, 4.7 and 4.8 show the corresponding experimental results
when γ is 0.1, 0.3 and 0.5. From Table 4.6, we can see that since the training

(a) 300 training object and
clutter chips.

(b) 500 training object
and clutter chips.

(c) 700 training object
and clutter chips.

Figure 4.8. The number of features selected vs. generation number.

0
2
4
6
8

10
12
14

0 10 20 30 40 50

generation

n
u

m
b

er
 o

f
fe

at
u

re
s

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45

generation

n
u

m
b

er
 o

f
fe

at
u

re
s

0
2
4
6
8

10
12

0 5 10 15 20 25 30

generation

n
u

m
b

er
 o

f
fe

at
u

re
s

Chapter 4: GA-based Feature Selection for Object Detection

 78

Table 4.5. Experimental results with 500 training object and clutter chips. (penalty function,
equation (4.4); ε = 0.0015)

Number of
errors

Number of
errors

Run
No.

Best
Genera-

tion

Total
Genera-

tion

Number
of

features

Features
selected

Train-
ing

error
rate

Ob-
ject

Clut-
ter

Test-
ing

error
rate

Ob-
ject

Clut-
ter

1 4 22 13 0111111011
1100111000

0.002 1 1 0.004 0 4

2 11 11 10 1011011011
0001100100

0.001 1 0 0.005 0 5

3 2 20 9 0101101001
1011000100

0.002 1 1 0.005 0 5

4 4 22 11 1010011011
0101011100

0.002 1 1 0.004 0 4

5 3 21 10 1110001011
1010010100

0.002 1 1 0.003 0 3

6 10 10 9 0011011011
0000110100

0.001 1 0 0.005 0 5

7 8 26 10 1101101001
0011010010

0.002 1 1 0.001 0 1

8 2 20 11 1110101011
0001001110

0.002 1 1 0.003 0 3

9 3 21 10 0110011011
1101100000

0.002 1 1 0.005 0 5

10 3 21 9 1110011011
0000110000

0.002 1 1 0.008 0 9

ave 5 19.4 10.2 0.0018 1 1 0.0043 0 4.4

Number of
errors

Number of
errors

Run
No.

Best
Genera-

tion

Total
Genera-

tion

Number
of

features

Features
selected

Train-
ing

error
rate

Ob-
ject

Clut-
ter

Test-
ing

error
rate

Ob-
ject

Clut-
ter

1 18 36 2 0000001001
0000000000

0.005 2 3 0.024 0 26

2 12 30 2 0000001000
0000001000

0.007 1 6 0.007 0 8

3 17 35 2 0000001001
0000000000

0.005 2 3 0.024 0 26

4 20 38 2 0000001001
0000000000

0.005 2 3 0.024 0 26

5 16 34 2 0000001001
0000000000

0.005 2 3 0.024 0 26

6 11 29 2 0000001001
0000000000

0.005 2 3 0.024 0 26

7 15 33 2 0000001001
0000000000

0.005 2 3 0.024 0 26

8 17 35 2 0000001001
0000000000

0.005 2 3 0.024 0 26

9 14 32 2 0000001001
0000000000

0.005 2 3 0.024 0 26

10 12 30 2 0000001000
0000001000

0.007 1 6 0.007 0 8

ave 15.2 33.2 2 0.0054 1.8 3.6 0.0206 0 22.4

Table 4.6. Experimental results with 500 training object and clutter chips. (penalty and #
of features, equation (4.5); γ = 0.1; ε = 0.0015)

Chapter 4: GA-based Feature Selection for Object Detection

 79

Number of
errors

Number of
errors

Run
No.

Best
Genera-

tion

Total
Genera-

tion

Number
of

features

Features
selected

Train-
ing

error
rate

Ob-
ject

Clut-
ter

Testing
error
rate Ob-

ject
Clut-

ter
1 23 41 1 0000001000

0000000000
0.01 1 9 0.036 0 39

2 20 38 1 0000001000
0000000000

0.01 1 9 0.036 0 39

3 11 29 2 1000001000
0000000000

0.005 1 4 0.033 0 36

4 8 26 3 0000000010
0010010000

0.008 4 4 0.005 0 5

5 30 48 1 0000001000
0000000000

0.01 1 9 0.036 0 39

6 14 32 1 0000001000
0000000000

0.01 1 9 0.036 0 39

7 25 43 1 0000001000
0000000000

0.01 1 9 0.036 0 39

8 20 38 1 0000001000
0000000000

0.01 1 9 0.036 0 39

9 22 40 1 0000001000
0000000000

0.01 1 9 0.036 0 39

10 27 45 1 0000001000
0000000000

0.01 1 9 0.036 0 39

ave 20 38 1.3 0.0093 1.3 8 0.0326 0 35.3

Table 4.7. Experimental results with 500 training object and clutter chips. (penalty and # of
features, equation (4.5); γ = 0.3; ε = 0.0015)

Number of
errors

Number of
errors

Run
No.

Best
Genera

-tion

Total
Genera-

tion

Number
of

features

Features
selected

Train
-ing
error
rate

Ob-
ject

Clut-
ter

Testing
error
rate Ob-

ject
Clut-

ter
1 17 35 1 0000001000

0000000000
0.01 1 9 0.036 0 39

2 29 41 1 0000001000
0000000000

0.01 1 9 0.036 0 39

3 22 40 1 0000001000
0000000000

0.01 1 9 0.036 0 39

4 15 33 1 0000001000
0000000000

0.01 1 9 0.036 0 39

5 32 50 1 0000001000
0000000000

0.01 1 9 0.036 0 39

6 11 29 1 0000001000
0000000000

0.01 1 9 0.036 0 39

7 11 29 1 0000001000
0000000000

0.01 1 9 0.036 0 39

8 23 41 1 0000001000
0000000000

0.01 1 9 0.036 0 39

9 9 27 2 0000000010
0000001000

0.012 5 7 0.011 0 12

10 23 41 1 0000001000
0000000000

0.01 1 9 0.036 0 39

ave 19.2 37.2 1.1 0.01 1.5 8.8 0.0335 0 36.3

Table 4.8. Experimental results with 500 training object and clutter chips. (penalty and # of
features, equation (4.5); γ = 0.5; ε = 0.0015)

Chapter 4: GA-based Feature Selection for Object Detection

 80

Number of
errors

Number of
errors

Run
No.

Best
Genera

-tion

Total
Genera-

tion

Number
of

features

Features
selected

Train
-ing
error
rate

Ob-
ject

Clut-
ter

Testin
g error

rate Ob-
ject

Clut-
ter

1 21 39 1 0000001000
0000000000

0.01 1 9 0.036 0 39

2 16 34 1 0000001000
0000000000

0.01 1 9 0.036 0 39

3 14 32 2 0000100010
0000000000

0.01 7 3 0.006 0 7

4 25 43 1 0000001000
0000000000

0.01 1 9 0.036 0 39

5 13 31 1 0000001000
0000000000

0.01 1 9 0.036 0 39

6 17 35 1 0000001000
0000000000

0.01 1 9 0.036 0 39

7 17 35 2 0000100010
0000000000

0.01 7 3 0.006 0 7

8 33 51 1 0000001000
0000000000

0.01 1 9 0.036 0 39

9 22 40 1 0000001000
0000000000

0.01 1 9 0.036 0 39

10 12 30 1 0000001000
0000000000

0.01 1 9 0.036 0 39

ave 19 37 1.2 0.01 2.2 7.8 0.03 0 32.6

Table 4.9. Experimental results with 500 training object and clutter chips. (error rate and # of
features, equation (4.6); γ = 0.1; ε = 0.0015)

Number of
errors

Number of
errors

Run
No.

Best
Genera-

tion

Total
Genera-

tion

Number
of

features

Features
selected

Train-
ing

error
rate

Ob-
ject

Clut-
ter

Testing
error
rate Ob-

ject
Clut-

ter
1 11 29 1 0000001000

0000000000
0.01 1 9 0.036 0 39

2 27 45 1 0000001000
0000000000

0.01 1 9 0.036 0 39

3 17 35 1 0000001000
0000000000

0.01 1 9 0.036 0 39

4 11 29 1 0000001000
0000000000

0.01 1 9 0.036 0 39

5 11 29 1 0000001000
0000000000

0.01 1 9 0.036 0 39

6 11 29 1 0000001000
0000000000

0.019 7 12 0.028 0 31

7 20 38 1 0000000010
0000000000

0.01 1 9 0.036 0 39

8 30 48 1 0000000010
0000000000

0.019 7 12 0.028 0 31

9 7 25 1 0000000010
0000000000

0.019 7 12 0.028 0 31

10 12 30 1 0000001000
0000000000

0.01 1 9 0.036 0 39

ave 15.7 33.7 1 0.013 2.8 9.9 0.0336 0 36.3

Table 4.10. Experimental results with 500 training object and clutter chips. (error rate and #
of features, equation (4.6); γ = 0.3; ε = 0.0015)

Chapter 4: GA-based Feature Selection for Object Detection

 81

error rate is low, the number of features selected accounts for a large percentage
of the value of the fitness function, forcing GA to select only 2 features in each
run. However, the error rate for testing results is not encouraging. It is more than
0.02 on the average. When γ is 0.3, the number of features account for a larger
part of the value of the fitness function than when γ is 0.1, forcing GA to select
almost only one feature. Actually, in 8 runs, GA selects the best feature among
all the 20 features (see Table 4.12) to discriminate object from clutter. When γ is
0.5, the number of features almost dominates the value of fitness function. The
same phenomenon occurs and the experimental results are shown in Table 4.8.

Finally, function (4.6) is used as the fitness function. Three experiments are
performed with this function, and the values of γ are 0.1, 0.3 and 0.5 in these three
experiments, respectively. The error rate threshold is 0.0015. Like the function
(4.5), this function considers both the number of features selected and the error
rate. When γ is large, this function forces GA to select one feature. Usually, the
best feature is selected (see Table 4.12). Tables 4.9, 4.10 and 4.11 show the
corresponding experimental results when γ is 0.1, 0.3 and 0.5, respectively.

To show that GA selects the best feature when the number of features dominates
the fitness function, the efficacy of each feature in discriminating objects from
clutters is examined. The data used in examination are 500 object chips and 500
clutter chips used in the above training. The results are shown in Table 4.12.

Number of
errors

Number of
errors

Run
No.

Best
Genera-

tion

Total
Genera-

tion

Number
of

features

Features
selected

Train
-ing
error
rate

Ob-
ject

Clut-
ter

Testing
error
rate Ob-

ject
Clut-

ter
1 25 43 1 0000000010

0000000000
0.019 7 12 0.028 0 31

2 11 29 1 0000001000
0000000000

0.01 1 9 0.036 0 39

3 8 26 1 0000000010
0000000000

0.019 7 12 0.028 0 31

4 11 29 1 0000001000
0000000000

0.01 1 9 0.036 0 39

5 8 26 1 0000001000
0000000000

0.01 1 9 0.036 0 39

6 15 33 1 0000001000
0000000000

0.01 1 9 0.036 0 39

7 9 27 1 0000001000
0000000000

0.01 1 9 0.036 0 39

8 12 30 1 0000001000
0000000000

0.01 1 9 0.036 0 39

9 29 47 1 0000001000
0000000000

0.01 1 9 0.036 0 39

10 24 42 1 0000001000
0000000000

0.01 1 9 0.036 0 39

ave 15.2 33.2 1 0.013 2.2 9.4 0.0344 0 37.4

Table 4.11. Experimental results with 500 training object and clutter chips. (error rate and # of
features, equation (4.6); γ = 0.5; ε = 0.0015)

Chapter 4: GA-based Feature Selection for Object Detection

 82

From this table, it can be seen that the best feature (feature 7, the maximum
CFAR feature) is selected by GA.

4.4.3 Comparison and Analysis

Figure 4.9 shows the average performances of the above experiments pictorially.
The X-axis is the average number of features selected and the Y-axis is the
average training error rate. The average number of features selected and average
training error rate form a performance point and the performance is evaluated
according to the location of a performance point. A good performance point
should have lower values of both the number of features and the training error.
The three points shown as circles are the performance points when the MDL-
based fitness function is used and the rest are the performance points
corresponding to other fitness functions.

From the above experimental results, we can see that GA is capable of selecting a
good set of features to discriminate objects from clutters. The MDL-based fitness
function is the best fitness function compared to three other functions. Fitness
function (4.4) doesn’t include the number of features. Although GA can find a
good set of features quickly driven by this function, many features are selected.
This greatly increases the computational complexity in the testing phase. Fitness
functions (4.5) and (4.6) take the number of features selected into consideration.
However, the number of features dominates the fitness function value, forcing GA
to select only one or two features, leading to the unsatisfactory training and
testing error rates. In order to balance the number of features selected and the

Number of errors Number of errors Feature

Error rate

Object Clutter

Feature

Error rate

Object Clutter

1 0.119 17 102 11 0.118 18 100

2 0.099 16 83 12 0.111 6 105

3 0.056 7 49 13 0.126 9 117

4 0.057 17 40 14 0.131 7 124

5 0.068 13 55 15 0.09 5 85

6 0.354 0 354 16 0.069 3 66

7 0.01 1 9 17 0.075 3 72

8 0.5 480 20 18 0.209 0 209

9 0.019 7 12 19 0.2 2 198

10 0.073 15 58 20 0.244 0 244

Table 4.12. Experimental results of using only one feature in discrimination. (object chips = 500,
clutter chips = 500)

Chapter 4: GA-based Feature Selection for Object Detection

 83

error rate, parameter γ must be finely tuned. This is not an easy task and it usually
takes a lot of time. The MDL-based fitness function is based on a sound theory
and it balances these two terms very well. Only a few features are selected while
the training and testing error rates are kept low.

In order to evaluate which features are more important than others using MDL-
based approach, let us combine the results of the first, second and fourth
experiments. Note that in the first, second and fourth experiments (shown in
Tables 4.1, 4.2 and 4.4), GA are invoked for a total of 30 times. Table 4.13 shows
the number of times each feature is selected in these 30 runs. It can be seen from
Table 4.13 that the fractal dimension feature (feature 2), the maximum CFAR
feature (feature 7) and the count feature (feature 10) are very useful in detecting
objects in SAR images, and the standard deviation feature (feature 1) and the
mean CFAR feature (feature 8) are not good. The major diagonal projection
feature (feature 13), the minimum distance feature (feature 15), the maximum
distance feature (feature 16) and the average distance feature (feature 17) have
low utility while other features have very low utility. The results are consistent
with those shown in Table 4.12. Considered individually, the maximum CFAR
feature (feature 7) is the best feature (see Table 12) and selected (in combination
with other features) in all the 30 runs.

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

0.011
0.012
0.013
0.014

0 1 2 3 4 5 6 7 8 9 10 11

number of features

tr
ai

n
in

g
 e

rr
o

r
ra

te

Figure 4.9. Average performances of various fitness functions.

Chapter 4: GA-based Feature Selection for Object Detection

 84

4.5 Summary
In this chapter, a GA feature selection algorithm is applied to a specific
application domain to discriminate objects from natural clutter false alarms in
SAR images. Rough object detection, feature extraction, GA based feature
selection and final discrimination are successfully implemented and good results
are obtained. The experimental results show that GA selected a good subset of
features. Also, an MDL-based fitness function is proposed and its performance is
compared with three other fitness functions. The experimental results show that it
balances the number of features selected and the error rate very well and it is the
best fitness function compared to other three fitness functions.

Features

1 2* 3 4 5 6 7* 8 9 10* 11 12 13 14 15 16 17 18 19 20

Exp1 0 8 2 1 1 1 10 0 2 10 1 2 3 1 4 0 0 0 0 0

Exp2 0 8 0 1 0 0 10 0 1 10 2 1 2 1 2 4 5 1 1 1

Exp4 0 8 0 2 0 2 10 0 0 10 1 0 3 0 2 4 6 1 2 1

Total 0 24 2 4 1 3 30 0 3 30 4 3 8 2 8 8 11 2 3 2

Table 4.13. The number of times each feature is selected in Experiments 1, 2 and 4.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 85

Chapter 5

Learning Composite Features for
Recognition Using Coevolutionary
Genetic Programming

This chapter investigates synthesizing composite features for object recognition.
The basic task of object recognition is to identify the kinds of the objects in an
image, and sometimes the task may include estimating the pose of the recognized
objects. One of the key approaches to object recognition is based on features
extracted from images. These features capture the characteristics of the object to
be recognized and are fed into a classifier to perform recognition. The quality of
object recognition is heavily dependent on the effectiveness of features.
However, it is difficult to extract good features from real images due to various
factors, including noise. More importantly, there are many features that can be
extracted. What are the appropriate features and how to synthesize composite
features useful to the recognition from primitive features? The answers to these
questions are largely dependent on the intuitive instinct, knowledge, experience
and the bias of human experts.

In this chapter, the effectiveness of co-evolutionary genetic programming (CGP)
in generating composite operator vectors for object recognition is investigated.
The elements of a composite operator vector are synthesized composite operators.
A composite operator is represented by a binary tree whose internal nodes are the
pre-specified primitive operators and leaf nodes are primitive features. It is a way
of combining primitive features. With each element evolved by a sub-population
of CGP, a composite operator vector is cooperatively evolved by all the sub-
populations. By applying composite operators, corresponding to each sub-
population, to the primitive features extracted from images, composite feature
vectors are obtained. These composite feature vectors are fed into a classifier for
recognition. The primitive features are real numbers and they are designed by
human experts based on the type of objects to be recognized. It is worth noting
that the primitive operators and primitive features are decoupled from the CGP
mechanism that generates composite operators. The users can tailor them to their
own particular recognition task without affecting the other parts of the system.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 86

Thus, the method and the recognition system are flexible and can be applied to a
wide variety of images.

Motivation
The recognition accuracy of an automatic object recognition system is determined
by the quality of the feature set used. Usually, it is the human experts who design
the features to be used in recognition. Handcrafting a set of features requires
human ingenuity and insight into the characteristics of the objects to be
recognized and in general, it is very difficult to identify a set of features that
characterize a complex set of objects. Typically, many types of features are
explored before a recognition system can be built to perform the desired
recognition task. There are a lot of features available and these features may be
correlated, making the designing and selection of appropriate features a very time
consuming and expensive process. Sometimes, it is even impossible to figure out
and extract simple features that are effective in recognition directly from images.
At this time, synthesizing composite features that are useful to the current
recognition task from those simple primitive features available becomes
extremely important. The process of synthesizing composite features can often be
dissected into some primitive operations on the primitive features. It is usually
the human experts who, replying on their knowledge, rich experience, figure out a
smart way to combine these primitive operations to yield good composite
features. The task of finding good composite features is equivalent to finding
good points in the composite feature space. However, the ways of combining
primitive features are almost infinite, leading to a huge composite feature space.
It is obvious that a smart search strategy is a must in order to find good composite
features in such a huge space. The human experts can try a very limited number
of combination due to slow speed of human being and usually only the
conventional combinations are tried due to knowledge, experience and even the
bias of human experts. CGP, on the other hand, may try many unconventional
combinations and in some cases it is these unconventional combinations that yield
exceptionally good recognition performance. Also, the inherent parallelism of
CGP and the speed of computers allow a much larger portion of the search space
to be explored by CGP than that explored by human experts and this greatly
enhances the chance of finding good composite features.

5.2 Related Research
Genetic programming (GP) has been used in image processing, object detection
and recognition. Harris et al. [5] apply GP to the production of high performance
edge detectors for 1D signals and image profiles. The method is also extended to
the development of practical edge detectors for use in image processing and
machine vision. Ebner et al. [38] use GP to automate the process of chaining a
series of well-known image processing operators to perform image processing.
Poli et al. [6] use GP to develop effective image filters to enhance and detect

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 87

features of interest or to build pixel-classification-based segmentation algorithm.
In chapters 2 and 3 and [39], GP is used to generate composite operators for
object detection. The primitive operators and primitive feature images used are
very basic and domain-independent, so the object detection method can be applied
to a wide variety of images. The experimental results showed that GP is a viable
way of synthesizing composite features from primitive features for object
detection and ROI extraction. Howard et al. [9] applied GP to automatic
detection of ships in low resolution SAR imagery using an approach that evolves
detectors. The detectors are algebraic formulae involving the values at pixels
belonging to a small region surrounding the pixel undergoing the test and the
detectors evolved by GP compare favorably in accuracy to those obtained using a
neural network. Roberts and Howard [10] use GP to develop automatic object
detectors in infrared images. They present a multi-stage approach to address
feature detection and object segregation and the detectors developed by GP do not
require images to be pre-processed. Stanhope and Daida [8] used GP paradigms
for the generation of rules for target/clutter classification and rules for the
identification of objects. GP is used to select relevant features from a previously
defined feature set and evolve logical expression on comparisons of the selected
features to both real-valued constants and themselves to create a linear classifier.
Krawiec and Bhanu [40, 41] present a method for the automatic synthesis of
recognition procedures chaining elementary operations for computer vision and
pattern recognition tasks based on cooperative coevolution and linear genetic
programming. Each sub-population evolves a part of the recognition procedure
and all the sub-populations coevolve the whole recognition procedure by selecting
the best individual from each sub-population and chaining them together. Their
experimental results show that genetic programming is effective in synthesizing
recognition procedure from elementary image processing operations and they also
show that coevolutionary genetic programming is superior to regular one-
population genetic programming.

Unlike the work of Stanhope and Daida, the primitive operators in this
chapter are not logical operators, but operators on real numbers and the composite
operators are binary trees of primitive operators on real numbers, not binary trees
of logical operators [70]. They use GP to evolve logical expressions and the final
outcome of the logical expression determines the type of the object under
consideration (for example, 1 means target and 0 means clutter). In this chapter,
CGP is used to evolve composite feature vectors to be used by a Bayesian
classifier [42] and each sub-population is responsible for evolving a specific
composite feature in the composite feature vector. The classifier evolved by GP
in their system can be viewed as a linear classifier, but the classifier evolved by
CGP here is a Bayesian classifier determined by the composite feature vectors
from training images. Unlike the work of Bhanu and Krawiec, composite
operators in this chapter are binary tree of primitive operators and primitive

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 88

features, whereas the recognition procedures in their system are linked list of
simple image processing operations.

5.3 Technical Approach
In the CGP-based approach, individuals are composite operators represented by
binary trees with primitive operators as internal nodes and primitive features as
leaf nodes. The search space is the set of all possible composite operators. The
search space is huge and it is extremely difficult to find good composite operators
from this vast space unless one has a smart search strategy. The whole system is
divided into training and testing parts, which are shown in Figure 5.1(a) and (b),
respectively. During training, CGP runs on training images and evolves
composite operators to obtain composite features. Since a Bayesian classifier is
completely determined by the feature vectors from training images, so both the
composite features and the classifier are learned by CGP.

5.3.1 Design Considerations
• The set of terminals: The set of terminals are 20 primitive features used in
chapter 4. The first 10 of them are designed by MIT Lincoln lab to capture the

Figure 5.1. System diagram for object recognition using co-evolutionary genetic programming.

Testing Image Feature Extractor Primitive Features

Composite
Feature Vectors

Composite
Operator Vector

Bayesian
Classifier

Recognition

Results

(b) Testing  Applying learned composite feature vectors and Bayesian classifier to a test image

Training
Images

Feature
Extractor

Primitive
Features

Primitive
Operators

Coevolutionary
Genetic

Programming

Composite
Feature
Vectors

Composite
Operator
Vector

Bayesian
Classifier Ground Truth Fitness Evaluator Recognition

Results

Fitness

(a) Training  Learning composite feature vectors and Bayesian classifier

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 89

particular characteristics of synthetic aperture radar (SAR) imagery and are found
useful for object detection. The other 10 features are common features used
widely in image processing and computer vision. The 20 features are: (1)
standard deviation of image; (2) fractal dimension and (3) weighted rank fill ratio
of brightest scatterers; (4) blob mass; (5) blob diameter; (6) blob inertia; (7)
maximum and (8) mean values of pixels within blob; (9) contrast brightness of
blob; (10) count; (11) horizontal, (12) vertical, (13) major diagonal and (14)
minor diagonal projections of scatterers; (15) maximum, (16) minimum and (17)
mean distances of scatterers from their centroid; (18) moment µ20, (19) moment
µ02 and (20) moment µ22 of scatters. For detailed description, please refer to
chapter 4.

• The set of primitive operators: A primitive operator takes one or two real
numbers, performs a simple operation on them and outputs the result. Currently,
12 primitive operators shown in Table 5.1 are used, where a and b are real
numbers and input to an operator and c is a constant real number stored in an
operator.

• The fitness measure: the fitness of a composite operator vector is computed
in the following way: apply each composite operator of the composite operator
vector on the primitive features of training images to obtain composite feature
vectors of training images and feed them to a Bayesian classifier. The recognition
rate of the classifier is the fitness of the composite operator vector. To evaluate a
composite operator evolved in a sub-population (see Figure 5.2), the composite
operator is combined with the current best composite operators in other sub-
populations to form a complete composite operator vector where composite
operator from the ith sub-population occupies the ith position in the vector and the
fitness of the vector is defined as the fitness of the composite operator under
evaluation. The fitness values of other composite operators in the vector are not
affected. When sub-populations are initially generated, the composite operators
in each sub-population are evaluated separately without being combined with
composite operators from other sub-populations. After each generation, the

Table 5.1. Twelve primitive operators.

Primitive
Operator

Description Primitive
Operator

Description

ADD (a, b) Add a and b. ADDC (a, c) Add constant value c to a.
SUB (a, b) Subtract b from a. SUBC (a, c) Subtract constant value c from a.
MUL (a, b) Multiply a and b. MUL (a, c) Multiply a with constant value c.
DIV (a, b) Divide a by b. DIVC (a, c) Divide a by constant value c.
MAX2 (a, b) Get the larger of a and b. MIN2 (a, b) Get the smaller of a and b.
SQRT (a) Return a if a ≥ 0; oth-

erwise, return a−− .

LOG (a) Return log(a) if a ≥ 0; otherwise,
return – log(-a).

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 90

composite operators in the first sub-population are evaluated first, then the
composite operators in the second sub-population and so on.

• Parameters and termination: The key parameters are the number of sub-
population N, the population size M, the number of generations G, the crossover
and mutation rates, and the fitness threshold. GP stops whenever it finishes the
specified number of generations or the performance of the Bayesian classifier is
above the fitness threshold. After termination, CGP selects the best composite
operator of each sub-population to form the learned composite operator vector to
be used in testing.

5.3.2 Selection, Crossover and Mutation
The CGP searches through the space of composite operator vectors to generate
new composite operator vectors. The search is performed by selection, crossover
and mutation operations. The initial sub-populations are randomly generated.
Although sub-populations are cooperatively evolved (the fitness of a composite
operator in a sub-population is not solely determined by itself, but affected by the
composite operators from other sub-populations), selection is performed only on
composite operators within a sub-population and crossover is not allowed
between two composite operators from different sub-populations.

• Selection: The selection operation involves selecting composite operators
from the current sub-population. In this chapter, tournament selection is used.
The higher the fitness value, the more likely the composite operator is selected to
survive.

• Crossover: Two composite operators, called parents, are selected on the basis
of their fitness values. The higher the fitness value, the more likely the composite
operator is selected for crossover. One internal node in each of these two parents
is randomly selected, and the two subtrees rooted at these two nodes are
exchanged between the parents to generate two new composite operators, called
offspring. It is easy to see that the size of one offspring (i.e., the number of nodes

Subpopulation 1:

Best Individual

Subpopulation i:

 Individual j

Subpopulation n:

 Best Individual

Composite
operator
vector

Primitive
features classifier composite

 feature
vectors

evaluator Ground
truth

Recognition results

fitness

Figure 5.2. Computation of fitness of jth composite operator of ith subpopulation.

assemble

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 91

in the binary tree representing the offspring) may be greater than both parents if
crossover is implemented in such a simple way. To prevent code bloat, we
specify a maximum size of a composite operator. If the size of one offspring
exceeds the maximum size, the crossover is performed again until the sizes of
both offspring are within the limit.

• Mutation: To avoid premature convergence, mutation is introduced to
randomly change the structure of some composite operators to maintain the
diversity of sub-populations. Candidates for mutation are randomly selected and
the mutated composite operators replace the old ones in the sub-populations.
There are three mutations invoked with equal probability:

1. Randomly select a node of the composite operator and replace the subtree
rooted at this node by another randomly generated binary tree

2. Randomly select a node of the composite operator and replace the primitive
operator stored in the node with another primitive operator randomly
selected from the primitive operators of the same number of input as the
replaced one.

3. Randomly selected two subtrees of the composite operator and swap them.
Of course, neither of the two sub-trees can be a sub-tree of the other.

5.3.3 Generational Co-evolutionary Genetic Programming
Generational co-evolutionary genetic programming is used to evolve composite
operators. The GP operations are applied in the order of crossover, mutation and
selection. Firstly, two composite operators are selected on the basis of their
fitness values for crossover. The two offspring from crossover are kept aside and
won’t participate in the following crossover operations on the current sub-
population. The above process is repeated until the crossover rate is met. Then,
mutation is applied to the composite operators in the current sub-population and
the offspring from crossover. Finally, selection is applied to select some
composite operators from the current sub-population and combine them with the
offspring from crossover to get a new sub-population of the same size as the old
one. In addition, an elitism replacement method is adopted to keep the best
composite operator from generation to generation.

• Generational Co-evolutionary Genetic Programming:

0. randomly generate N sub-populations of size M and evaluate each composite
operator in each sub-population individually.

1. for gen = 1 to generation_num do
2. for i =1 to N do
3. keep the best composite operator in sub-population Pi.
4. perform crossover on the composite operators in Pi until the crossover

rate is satisfied and keep all the offspring from crossover.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 92

5. perform mutation on the composite operators in Pi and the offspring
from crossover with the probability of mutation rate.

6. perform selection on Pi to select some composite operators and combine
them with the composite operators from crossover to get a new sub-
population Pi’ of the same size as Pi.

7. evaluate each composite operator Cj in Pi’. To evaluate Cj, select the cur-
rent best composite operator in each of the other sub-populations, com-
bine Cj with those N-1 best composite operators to form a composite op-
erator vecter where composite operator from the kth sub-population oc-
cupy the kth position in the vector (k=1, …, N). Run the composite opera-
tor vector on the primitive features of the training images to get compos-
ite feature vectors and use them to build a Bayesian classifier. Feed the
composite feature vectors into the Bayesian classifier and let the recogni-
tion rate be the fitness of the composite operator vector and the fitness of
Cj.

8. let the best composite operator from Pi replace the worst composite op-
erator in Pi’ and let Pi = Pi’

9. Form the composite operator vector consisting of the best composite op-
erators from corresponding sub-populations and evaluate it. If its fitness
is above the fitness threshold, goto 10.

 endfor // loop 2
 endfor // loop 1
10. select the best composite operator from each sub-population to form the

learned composite operator vector and output it.

5.4 Experiments
Various experiments are performed to test the efficacy of genetic programming in
generating composite features for object recognition. In this chapter, we show
some selected examples. All the images used in the experiments are real synthetic
aperture radar (SAR) images. These images are divided into training and testing
images. 20 primitive features are extracted from each SAR image. CGP runs on
primitive features from training images to generate a composite operator vector
and a Bayesian classifier. The composite operator vector and the Bayesian
classifier are tested against the testing images. It is worth noting that the ground
truth is used only during training. The experiments are categorized into three
classes: (1) distinguishing man-made military objects from natural clutters, (2)
distinguishing between 3 kinds of man-made military objects and (3)
distinguishing between 5 kinds of man-made military objects. For the purpose of
objective comparison, CGP is invoked ten times for each experiment with the
same set of parameters and the same set of training images. Only the average
performances are used for comparison. Some of the parameters of CGP used
throughout the experiments are shown in Table 5.2. The maximum size of a

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 93

composite operator is 10 in experiment 1 and 20 in experiments 2 and 3. The
constant real number c stored in some primitive operators ranges from –20 to 20.

5.4.1 Distinguish Object from Clutter
• Data: The data used here are the same as those used in chapter 4. From
MSTAR public real SAR images, 1048 SAR images containing objects and 1048
SAR images containing natural clutters are generated. These images have size
120×120 and are called object images and clutter images, respectively. An
example object image and clutter image are shown in Figure 5.3, where white
spots indicate scatterers with high magnitude. 300 object images and 300 clutter
images are randomly selected as training images and the rest are used in testing.

• Experiment 1: First, the efficacy of each primitive feature in discriminating
the objects from the clutters is examined. Each kind of primitive features from
training images is used to train a Bayesian classifier and the classifier is tested
against the same kind of primitive features from the testing images. The results
are shown in Figure 5.4 and Table 5.3. Feature contrast brightness of blob (9) is
the best one with recognition rate 0.98.
To show the efficacy of CGP in synthesizing effective composite features, we
consider three cases: only the worst two primitive features (blob inertia (6) and
mean values of pixels within blob (8)) are used by CGP; five bad primitive
features (blob inertia (6), mean values of pixels within blob (8), moments µ20
(18), µ02 (19) and µ22 (20) of scatters) are used by CGP; 10 common features

Sub-population size 50 Crossover rate 0.6
Number of generation 50 Mutation rate 0.05

Fitness threshold 1.0

Table 5.2. Parameters of CGP used throughout the experiments.

(b) A natural
clutter image

(a) An object
image

Figure 5.3. Example object and
clutter SAR images.

0
0.2
0.4
0.6
0.8

1

1 3 5 7 9 11 13 15 17 19

feature

re
co

g
n

it
io

n
 r

at
e

Figure 5.4. Recognition rates of
20 primitive features.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 94

(primitive features 11 to 20) not specifically designed to deal with SAR images
are used by CGP during synthesis. The number of sub-populations is 3, which
means the dimension of the composite feature vector is 3. The results are shown
in Table 5.4 and Figure 5.5, where the horizontal coordinates are the number of
primitive features used in synthesis and the vertical coordinates are the bins on the

left show the training results and those on the right show the testing results. The
numbers above the bins are the average recognition rates over all ten runs. Then
the number of sub-population is increased from 3 to 5. The same 2, 5 and 10
primitive features are used as building blocks by CGP to evolve composite
features. The experimental results are shown in Table 5.5 and Figure 5.6.

From Figures 5.5 and 5.6, it is obvious that composite feature vectors synthesized
by CGP are very effective. They are much better than the primitive features upon
which they are built. Actually, if both features 6 and 8 from the training images
jointly form 2-dimensional primitive feature vectors to train a Bayesian classifier

Feature
Number

Primitive Feature Recognition
Rate

Feature
Number

Primitive Feature Recognition
Rate

1 Standard deviation 0.88 11 Horizontal projection 0.90
2 Fractal dimension 0.91 12 Vertical projection 0.91
3 Weight-rank fill ratio 0.94 13 Major diagonal projection 0.89
4 Blob mass 0.94 14 Minor diagonal projection 0.88
5 Blob diameter 0.94 15 Minimum distance 0.92
6 Blob inertia 0.66 16 Maximum distance 0.95
7 Maximum CFAR 0.97 17 Mean distance 0.94
8 Mean CFAR 0.49 18 Moment µ20 0.80
9 Percent bright CFAR 0.98 19 Moment µ02 0.81

10 Count 0.92 20 Moment µ22 0.75

Table 5.3. Recognition rates of 20 primitive features.

Recognition Rate
2f 5f 10f

Runs

Training Testing Training Testing Training Testing
1 0.99 0.980 0.992 0.992 0.965 0.983
2 0.988 0.991 0.993 0.994 0.975 0.982
3 0.988 0.989 0.993 0.987 0.978 0.987
4 0.988 0.989 0.992 0.985 0.975 0.987
5 0.988 0.989 0.978 0.987 0.975 0.989
6 0.988 0.987 0.995 0.995 0.965 0.979
7 0.988 0.990 0.992 0.992 0.973 0.983
8 0.99 0.979 0.992 0.974 0.97 0.983
9 0.99 0.979 0.992 0.993 0.968 0.983
10 0.992 0.983 0.992 0.987 0.968 0.983

Average 0.989 0.986 0.991 0.989 0.971 0.984

Table 5.4. Experimental results with 3 sub-populations.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 95

for recognition, the recognition rate is 0.668 on the testing images; if features 6, 8,
18, 19, and 20 jointly form 5-dimensional primitive feature vectors, the
recognition rate is 0.947; if all the last 10 primitive features are used, the
recognition rate is 0.978. The average recognition rates of composite feature

vectors are better than all the above results. Figure 5.7 shows the composite
operator vector evolved by CGP maintaining 3 sub-populations in the 6th run
when 5 primitive features are used, where PFi means the primitive feature i and so
on.

Recognition Rate
2f 5f 10f

Runs

Training Testing Training Testing Training Testing
1 0.988 0.981 0.993 0.995 0.975 0.992
2 0.99 0.980 0.995 0.993 0.972 0.979
3 0.988 0.983 0.995 0.991 0.97 0.981
4 0.99 0.982 0.993 0.991 0.983 0.986
5 0.992 0.983 0.993 0.987 0.977 0.990
6 0.988 0.982 0.995 0.992 0.98 0.990
7 0.99 0.984 0.993 0.993 0.977 0.981
8 0.992 0.981 0.995 0.992 0.975 0.986
9 0.99 0.984 0.995 0.990 0.982 0.986
10 0.992 0.983 0.993 0.996 0.975 0.987

Average 0.99 0.982 0.994 0.992 0.977 0.986

Table 5.5. Experimental results with 5 sub-populations.

0.99 0.99

0.97

0.99
0.9850.986

0.96

0.98

1

2 5 10
of primitive features used in

synthesis

re
co

g
n

it
io

n
 r

at
e

training testing

0.99 0.994

0.977
0.982

0.992
0.986

0.96
0.97
0.98
0.99

1

2 5 10

of primitive features used in
synthesis

re
co

g
n

iti
o

n
 r

at
e

training testing

Figure 5.5. Experimental results
with 3 sub-populations.

Figure 5.6. Experimental results
with 5 sub-populations.

(MULC (MULC (SUBC
(SQRT (LOG PF8)))))

(a) Composite operator 1

(DIV (DIVC (DIVC
(DIV PF18 PF6))) PF8)

(b) Composite operator 2

(SQRT PF8)

(c) Composite operator 3

Figure 5.7. Composite operator vector learned by CGP.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 96

5.4.2 Recognize Objects
• Data: Five objects (BRDM2 truck, D7 bulldozer, T62 tank, ZIL131 truck and
ZSU anti-aircraft gun) are used in the experiments. For each object, 210 real SAR
images under 15°-depression angle and various azimuth angles between 0° and
359° are collected from MSTAR public data. Figure 5.8 shows one optical and
four SAR images of each object. From Figure 5.8, we can see that it is not easy to
distinguish SAR images of different objects. Since SAR images are very
sensitive to azimuth angles and training images should represent the
characteristics of an object under various azimuth angles, 210 SAR images of
each object are sorted in the ascending order of their azimuth angles and the first,
fourth, seventh, tenth SAR images and so on are selected for training. Thus, for
each object, 70 SAR images are used in training and the rest are used in testing.

(a) Optical and SAR images of BRDM2.

(b) Optical and SAR images of D7.

(c) Optical and SAR images of T62.

(d) Optical and SAR images of ZIL.

(e) Optical and SAR images of ZSU.

Figure 5.8. Five military objects used in recognition.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 97

• Experiment 2 - Discriminate three objects: CGP synthesizes composite
features to recognize three objects: BRDM2, D7 and T62. First, the efficacy of
each primitive feature in discriminating these three objects is examined. The
results are shown in Table 5.6 and Figure 5.9. Feature means values of pixels
within blob (8) are the best primitive feature with recognition rate 0.73. Three
series of experiments are performed in which CGP maintains 3, 5 and 8 sub-
populations to evolve 3, 5 and 8-dimensional composite features, respectively.
The primitive features used in the experiments are all the 20 primitive features
and the last 10 primitive features. The experimental results are shown in Tables
5.7, 5.8 and 5.9. Figures 5.10, 5.11 and 5.12 show the average performance,
where 10f and 20f mean primitive features 11 to 20 and all the 20 primitive
features, respectively. The bins on the left show the training results and those on
the right show the testing results. The numbers above the bins are the average
recognition rates over all ten runs.

From Figures 5.10, 5.11 and 5.12, it is clear that the learned composite feature
vectors are more effective than primitive features. If all the 20 primitive features
from the training images are used to form 20-dimensional primitive feature
vectors to train a Bayesian classifier for recognition, the recognition rate is 0.96
on the testing images. This result is a little bit better than the average
performance shown in Figure 5.10 (0.94), but the dimension of the feature vector

0.92 0.99 0.96
0.86

0.6

0.8

1

10f 20f

of primitive features used in
synthesis

re
co

g
n

it
io

n
 r

at
e

training testing

Figure 5.11. Recognition rates
with 5 sub-populations.

0.96
0.999

0.87

0.97

0.8

0.9

1

10f 20f
of primitive features used in

synthesis

re
co

g
n

it
io

n
 r

at
e

training testing

Figure 5.12. Recognition rates
with 8 sub-populations.

Figure 5.9. Recognition rates
of 20 primitive features.

Figure 5.10. Recognition rates
with 3 sub-populations.

0
0.2
0.4
0.6
0.8

1 3 5 7 9 11 13 15 17 19

primtive feature

re
co

g
n

it
io

n
 r

at
e

0.88
0.97

0.843
0.94

0.6

0.8

1

10f 20f
of primitive features used in

synthesis

re
co

g
n

it
io

n

ra
te

training testing

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 98

is 20. However, the dimensions of composite feature vectors in Figures 5.10 and
5.11 are just 3 and 5 respectively. If the dimension of composite feature vector is
increased from 3 to 5 and 8, the CGP results are better. If the last 10 primitive

Feature
Number

Primitive Feature Recognition
Rate

Feature
Number

Primitive Feature Recognition
Rate

1 Standard deviation 0.376 11 Horizontal projection 0.414
2 Fractal dimension 0.662 12 Vertical projection 0.545
3 Weight-rank fill

ratio
0.607 13 Major diagonal projec-

tion
0.460

4 Mass 0.717 14 Minor diagonal projec-
tion

0.455

5 Diameter 0.643 15 Minimum distance 0.505
6 rotational inertia 0.495 16 Maximum distance 0.417
7 Maximum CFAR 0.588 17 Mean distance 0.376
8 Mean CFAR 0.726 18 Moment µ20 0.421
9 Percent bright

CFAR
0.607 19 Moment µ02 0.443

10 Count 0.633 20 Moment µ22 0.512

Table 5.6. Recognition rates of 20 primitive features.

Recognition Rate
10f 20f

Runs

Training Testing Training Testing
1 0.895 0.836 0.981 0.967
2 0.886 0.829 0.967 0.948
3 0.867 0.848 0.952 0.921
4 0.910 0.831 0.957 0.945
5 0.857 0.843 0.962 0.926
6 0.910 0.843 0.967 0.936
7 0.852 0.862 0.981 0.938
8 0.871 0.838 0.976 0.936
9 0.876 0.860 0.967 0.952

10 0.871 0.843 0.981 0.956
Average 0.880 0.843 0.969 0.943

Table 5.7. Experimental results with 3 sub-populations.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 99

features are used, the recognition rate is 0.81. From these results, we can see that
the effectiveness of the primitive features has an important impact on the
effectiveness of the composite features synthesized by CGP. With effective
primitive features, CGP will synthesize better composite features. Figure 13
shows the composite operator vector evolved by CGP with 5 sub-populations in
the 10th run using 20 primitive features. The size of the first and second
composite operators is 20. The size of the third one and last one are 9 and 15,
respectively. The fourth composite operator is just primitive feature 11. The
primitive features used by the learned composite operator vector are primitive
features 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 18, 19, 20. If all these 13 primitive features
form 13-dimensional primitive feature vectors for recognition, the recognition rate
is 0.96

Recognition Rate
10f 20f

Runs

Train-
ing

Test-
ing

Train-
ing

Test-
ing

1 0.919 0.864 0.990 0.969
2 0.914 0.860 0.981 0.955
3 0.914 0.845 0.995 0.964
4 0.943 0.852 0.990 0.943
5 0.910 0.845 0.990 0.962
6 0.919 0.843 0.990 0.952
7 0.919 0.881 0.995 0.960
8 0.919 0.874 0.986 0.967
9 0.919 0.845 0.986 0.960

10 0.929 0.857 0.995 0.974
Aver-
age

0.921 0.857 0.990 0.961

Table 5.8. Experimental results with 5 sub-
populations.

Recognition Rate
10f 20f

Runs

Train-
ing

Test-
ing

Train-
ing

Test-
ing

1 0.976 0.888 1.0 0.967
2 0.962 0.860 1.0 0.971
3 0.952 0.9 1.0 0.976
4 0.967 0.876 1.0 0.964
5 0.967 0.871 1.0 0.967
6 0.952 0.845 0.995 0.979
7 0.967 0.852 1.0 0.979
8 0.957 0.874 0.995 0.95
9 0.957 0.867 1.0 0.964

10 0.967 0.869 0.995 0.983
Aver-
age

0.962 0.870 0.999 0.97

Table 5.9. Experimental results with 8 sub-
populations.

(PF11)

(DIV (MULC (SUB (SUB (DIVC
(SQRT PF6)) (MULC (SUB PF18
(MULC (SUB PF18 (SQRT PF4))))))
(SQRT PF6))) (MIN2 PF12 PF19))

(DIV (MULC (ADD (ADDC (MULC
(MUL (MIN2 (ADDC (DIV PF20
PF4)) PF14) PF3))) (LOG (ADDC
(DIV PF20 PF4))))) (DIVC PF4))

(a) Composite operator 1 (b) Composite operator 2

(DIV (MIN2 (SUBC
(SUBC PF11)) (MAX2
PF7 PF8)) PF8)

(LOG (ADDC (LOG (DIV (SUBC
(LOG (DIV (SUBC (LOG PF5))
(SUBC PF5)))) (MUL PF2 PF5)))))

(c) Composite operator 3 (d) Composite
operator 4

(e) Composite operator 5

Figure 5.13. Composite operator vector learned by CGP with 5 sub-populations.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 100

• Experiment 3 – Discriminate five objects: With more objects added, the
recognition becomes more difficult. This can be seen from Table 5.10 and Figure
14, which show the efficacy of each primitive feature in discriminating these five
objects. Feature blob mass (4) is the best primitive feature with recognition 0.49.
If all the 20 primitive features from the training images are used jointly to form
20-dimensional primitive feature vectors to train a Bayesian classifier for
recognition, the recognition rate is 0.81 on the testing images; if only the last 10
primitive features are used, the recognition rate is 0.62. This number is much
lower, since the last 10 features are common features and are not designed with
the characteristics of SAR images taken into consideration.

Table 5.10. Recognition rates of 20 primitive features.

Two series of experiments are performed in which CGP maintains 5 and 8 sub-
populations to evolve 5 and 8-dimensional composite features for recognition.
The primitive features used in the experiments are all the 20 primitive features
and the last 10 primitive features. The maximum size of composite operators is
20. The experimental results are shown in Tables 5.11 and 5.12. Figure 5.15
shows the average recognition performance. The left two bins in columns 10f and
20f correspond to 5 sub-populations and the right two bins correspond to 8 sub-

Feature
Number

Primitive Feature Recognition
Rate

Feature
Number

Primitive Feature Recognition
Rate

1 Standard deviation 0.224 11 Horizontal projection 0.273
2 Fractal dimension 0.473 12 Vertical projection 0.343
3 Weight-rank fill ratio 0.361 13 Major diagonal projec-

tion
0.281

4 Mass 0.486 14 Minor diagonal projec-
tion

0.265

5 Diameter 0.404 15 Minimum distance 0.277
6 rotational inertia 0.346 16 Maximum distance 0.294
7 Maximum CFAR 0.379 17 Mean distance 0.266
8 Mean CFAR 0.471 18 Moment µ20 0.277
9 Percent bright CFAR 0.449 19 Moment µ02 0.267

10 Count 0.453 20 µ 0.34

0
0.2

0.4
0.6

1 3 5 7 9 11 13 15 17 19

primitive feature

re
co

g
n

it
io

n
 r

at
e

0.68
0.86

0.58
0.770.79

0.93
0.63

0.83

0

0.5

1

10f 20f

of primitive features used in synthesis

re
co

gn
iti

on
 r

at
e

Figure 5.14. Recognition rates
of 20 primitive features.

Figure 5.15. Recognition rates with 5 (left
two bins) and 8 (right two bins) sub-
populations.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 101

populations. The bins showing the training results are to the left of those showing
the testing results. The numbers above the bins are the average recognition rates
over all ten runs.

From Figure 5.15, we can see that when the dimension of the composite feature
vector is 8, the performance of the composite features is good and it is better than
using all 20 (0.81) or 10 (0.62) primitive features upon which the composite
features are built. When the dimension of the composite feature vector is 5, the
recognition is not satisfactory when using just 10 common features as building
blocks. Also, when the dimension is 5, the average performance is a little bit
worse than using all 20 or 10 primitive features, but the dimension of the
composite feature vector is just one-fourth or half of the number of primitive

features, saving a lot of computational burden in recognition. When all the 20
primitive features are used and CGP has 8 sub-populations, the composite
operators in the best composite operator vector evolved have sizes 19, 1, 16, 19,
15, 7, 16 and 6, respectively and they are shown in Figure 5.16. The primitive

Recognition Rate
10f 20f

Runs

Train-
ing

Test-
ing

Train-
ing

Test-
ing

1 0.691 0.594 0.84 0.727
2 0.674 0.581 0.831 0.741
3 0.706 0.627 0.866 0.75
4 0.697 0.594 0.846 0.756
5 0.666 0.563 0.869 0.777
6 0.671 0.549 0.863 0.787
7 0.654 0.546 0.829 0.747
8 0.683 0.577 0.837 0.753
9 0.691 0.573 0.874 0.794
10 0.674 0.587 0.88 0.803

Aver-
age

0.681 0.579 0.854 0.764

Table 5.11. Experimental results with 5
sub-populations.

Recognition Rate
10f 20f

Runs

Train-
ing

Test-
ing

Train-
ing

Test-
ing

1 0.769 0.621 0.929 0.824
2 0.791 0.63 0.926 0.816
3 0.794 0.63 0.929 0.803
4 0.791 0.624 0.941 0.845
5 0.774 0.614 0.931 0.809
6 0.774 0.647 0.911 0.809
7 0.794 0.64 0.903 0.832
8 0.774 0.623 0.943 0.842
9 0.754 0.641 0.94 0.847
10 0.763 0.631 0.909 0.823

Aver-
age

0.778 0.630 0.926 0.825

Table 5.12. Experimental results with 8
sub-populations.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 102

features used by the synthesized composite operator vector are primitive features
2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19 and 20. If all these 16 primitive
features from the training images directly form 16-dimensional primitive feature
vectors to train a Bayesian classifier for recognition, the recognition rate is 0.80
on the testing images, which is lower than the average performance of the
composite feature vector shown in Figure 5.15.

5.4.3 Discussions
The above experiments show that CGP is a viable tool to synthesize effective
composite features from primitive features for object recognition and the learned
composite features outperform the primitive features or any combination of
primitive features upon which they are evolved. The effectiveness of composite
features learned by CGP is dependent on the effectiveness of primitive features.
The usefulness of CGP is that it can evolve composite features that are more
effective than the primitive ones upon which they are evolved. To achieve the
same recognition rate, the number of composite features needed is smaller than
the number of primitive features needed (one-fourth or half), thus, reducing the
computational expenses during run-time recognition.

5.5 Summary
This chapter investigates synthesizing composite features for object recognition.
Our experimental results using real SAR images show that CGP can evolve
composite features that are more effective than the primitive features upon which
they are built. To achieve the same recognition performance of primitive features,

(MIN2 PF10 (MIN2 (MULC (MUL
PF9 (MIN2 (DIVC PF10) (MUL
PF9 (DIVC PF10))))) (MIN2 (MUL
PF9 (DIVC PF10)) PF10)))

(PF3)
(SUB (SUBC (SUB PF14 PF18))
(MAX2 (MAX2 (MAX2 PF14
PF8) PF14) (MAX2 PF14 (MAX2
PF14 PF5))))

(a) Composite operator 1. (b) Composite operator 2. (c) Composite operator 3.

(SQRT (DIV PF10 (SQRT (MAX2 (MULC
(SUBC (DIV PF5 PF5))) (MAX2 (SUBC
(MULC (SUBC (MULC (DIV PF15 PF5)))))
PF10)))))

(LOG (MUL (LOG (SUB (ADD PF16
(SQRT (LOG (MUL (ADD PF16 PF16)
PF12)))) PF12)) PF20))

(d) Composite operator 4. (e) Composite operator 5

(SUB (LOG (DIVC
PF2)) (DIV PF9
PF16))

(ADDC (ADD PF18 (ADD (MULC (LOG
PF18)) (MIN2 (SUB PF2 PF11) (SUB
PF18 (SUB PF11 PF2))))))

(SQRT (SQRT
(SQRT (SQRT
(SQRT PF4)))))

(f) Composite operator 6. (g) Composite operator 7. (h) Composite operator 8.

Figure 5.16. Composite operator vector learned by CGP.

Chapter 5: Learning Composite Features for Recognition Using Coevolutionary Genetic
Programming

 103

fewer composite features are needed and this reduces the computational burden
during recognition. However, primitive features still have a significant impact on
the effectiveness of the evolved composite features. How to let CGP evolve
effective composite features using general primitive features is the focus of
subsequent chapters.

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 104

Chapter 6

Feature Synthesis for Recognition
Using Linear Genetic Programming

In this chapter, we present a novel method for learning complex
concepts/hypotheses directly from raw training data. The task addressed here
concerns data-driven synthesis of recognition procedures for real-world object
recognition task. The method uses linear genetic programming to encode
potential solutions expressed in terms of elementary operations, and handles the
complexity of the learning task by applying cooperative coevolution to
decompose the problem automatically. The training consists in coevolving
feature extraction procedures, each being a sequence of elementary image
processing and feature extraction operations. Extensive experimental results
show that the approach attains competitive performance for 3-D object
recognition in real synthetic aperture radar (SAR) imagery.

6.1 Introduction
Visual learning is a challenging domain for machine learning (ML) for several
reasons.

• Firstly, visual learning is a complex task, that usually requires problem
decomposition, which is nontrivial in itself.

• Secondly, the visual training data is represented in a way that is inconvenient
for most standard ML methods, and requires use of specialized procedures and
operators to access, aggregate, and transform the input.

• Thirdly, the amount of data that have to be processed during the training
process is usually much higher than in standard ML applications. This imposes
significant constraints on the effectiveness of the hypothesis space search.

• Finally, the real-world image data is usually noisy and contains plenty of
irrelevant components that have to be sieved out in the learning process.

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 105

The approach for recognizing objects in real-world images described in this
chapter addresses all these issues and attempts to solve these problems by using
important ideas from machine learning, evolutionary computation (EC), and
computer vision (CV), and combining them in a novel way.

6.2 Motivation, Related Work and Contribution

6.2.1 Motivation
The primary motivation for the research described in this chapter is the lack of
general methodology for the design and development recognition systems. The
design of recognition system for most real-world tasks is tedious, time-consuming
and expensive. Though satisfactory in performance in constrained situations, the
handcrafted solutions are usually limited in scope of applicability and have poor
adaptation ability in practical applications. As the complexity of the task of
object recognition by computer increases, the above limitations become severe
obstacles for the development of solutions to real-world problems. In some
aspects, it is similar to the way the complexity of the software development
process made the developers struggle until the software engineering came into
being.

6.2.2 Related Work
The interest in visual learning research has been rather limited in both ML and
CV communities, although the importances of vision in the development of
intelligent systems have been well recognized. In most approaches reported in the
literature, adaptation is limited to parameter optimization that usually concerns a
particular processing step, such as image segmentation, feature extraction, etc. In
those cases, learning does affect the overall recognition result in some complex
manner.

Current recognition systems are mostly open-loop and human input in the design
of these systems is still predominant. Only a few contributions, summarized in
Table 1, attempt to close the feedback loop of the learning process at the highest
(e.g., recognition) level and test the proposed approach in real-world setting.
Note that, to the best of our knowledge, only few approaches [60,53,55,49] have
been reported that learn using raw images as training data, and, therefore, produce
the entire object recognition system. Moreover, a majority of these methods [59,
48, 50] use domain-specific knowledge and are highly specialized towards a
particular application.

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 106

6.2.3 Contributions
(a) We propose a general approach to automatic learning/synthesis of recognition
procedures, that (i) uses raw image data for training, (ii) does not require domain-
specific knowledge, and (iii) attains competitive performance on a complex, real-
world object recognition task. The learning proceeds given only database of
training examples (images) partitioned into decision classes, and a set of general-
purpose image processing and feature extraction operators. We use the
cooperative coevolution [57], a new paradigm of EC, to handle the complexity of
the task.

(b) We use EC to perform the visual learning meant as the search in the space of
image representations (features).

(c) We adopt a variety of linear genetic programming (LGP) [43] for encoding of
basic image processing and feature extraction procedures.

(d) We use the real image data to demonstrate our approach and provide a
comparison of performance between the coevolutionary approach and standard
GA.

Table 6.1. Related work in visual learning.

Reference Approach Experimental task Training data
(Draper, 1993) Learning recognition

graphs
Recognizing buildings Higher-level CV

concepts
(Segen, 1994) Learning of object

models
Hand gesture
recognition

Graphs extracted from
images

(Johnson, 1995) EC (GP) Locating hand in
human body silhouette

Binary silhouettes

(Teller & Veloso,
1997)

EC (GP variant) Face recognition Raw images
(grayscale)

(Peng & Bhanu,
1998a)

Reinforcement
learning

Segmentation of
in/outdoor scenes

Raw images (color)

(Peng & Bhanu,
1998b)

Delayed reinforcement
learning

Segmentation and
feature extraction,
in/outdoor scenes

Raw images (color)

(Krawiec, 2001) EC (GP) Handwriting
recognition

Raw images
(grayscale)

(Rizky et. al., 2002) Hybrid EC (GP+NN) Target recognition in
radar modality

1-D radar signals

(Maloof et. al., 2003) Standard ML/PR
classifiers

Rooftop detection in
aerial imagery

Fixed set of scalar
features

This contribution EC (CC+LGP) Object recognition in
radar modality

Raw image (grayscale)

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 107

6.3 Technical Approach
The proposed approach operates in a learning-from-examples scheme, with
learner/inducer autonomously acquiring knowledge from the training examples
(images). The output of the learner is the synthesized recognition system that
implements the feature-based recognition paradigm, with processing split into
two stages: feature extraction and decision making. In particular, we include the
image processing and feature extraction into the learning process (learning loop).
The learner is, therefore, able to design the intermediate image representation that
is appropriate for solving the task faced. Note that, from machine learning
viewpoint, this approach may be regarded as a kind of constructive induction [51].

6.3.1 Evolving Recognition Procedures
The learning proceeds in the framework of evolutionary computation, where we
evolve procedures being sequences of elementary image processing and feature
extraction operations. The evolutionary algorithm maintains a set of such
procedures that are modified and mated during the evolutionary search (Figure
6.1). The procedures compete with each other by means of their fitness values
that reflect the utility of particular representation for solving the problem. The
best procedure found in the evolutionary run becomes the final result of the
procedure synthesis.

Procedure evaluationEvolutionary algorithm

Basic image
processing
operators

Cross-validation
experimentFitness

Feature vectors
for all training
images X∈D

Training
images D

LGP procedure
interpreter

Fast
classifier

P

Population of image
processing
procedures

Genetic operators

ProcedureProcedure
Procedure P

ProcedureProcedure
Procedure

Learning
loop

Figure 6.1. The overall architecture of our learning system.

6.3.2 Representation of Feature Extraction Procedures
An important issue that influences the performance of the proposed approach is
the representation of individuals. To speed up the convergence of the search
process and provide the system with basic knowledge, we assume that certain
elementary building blocks are given a priori to the learner in a form of basic
image processing, feature extraction, and feature transformation operators.

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 108

A variety of linear genetic programming (LGP) [43] is chosen as the
representation framework for the described system. LGP is a hybrid of genetic
algorithms (GA), and genetic programming (GP). The LGP genome, i.e. the
internal encoding of solution, is a fixed-length string of numbers that is
interpreted as a sequential procedure. The procedure is composed of (possibly
parameterized) basic operations that work on input data/images. The major
advantage of this linear representation is low susceptibility to destructive
crossovers, which is an important problem in GP.

The details of LGP procedure encoding may be briefly summarized as follows:

• Each procedure P is a fixed-length string of bytes [0.255] that encodes
sequence of operators, i.e. image processing and feature extraction algorithms.

• The operations work on registers (working variables) used for both input and
output during procedure execution. Image registers store processed images,
whereas real-number registers store scalar features. All image registers have
the same dimensions as the input image. Each image register, apart from
storing the image, maintains a single rectangular mask. A single learning
parameter nreg controls both the number of image and number registers.

• Each chunk of 4 consecutive bytes in the LGP procedure encodes a single
operation with the following elements: (i) operation code, (ii) mask flag –
decides whether the operation should be global (work on the entire image) or
local (limited to the mask), (iii) mask dimensions (ignored if mask flag is ‘off’),
(iv) arguments – numbers (identifiers) of registers to fetch input data and store
the result.

An example of operation is morphological opening (operation code) using
rectangular ROI (ROI flag ‘on’) of size 14 (ROI size) on the image fetched from
image register #4 (pointed by argument #1), and storing the result in image
register #5 (pointed by argument #2).

There are currently approximately 70 operations implemented in the system,
consisting mostly of Intel Image Processing [46] and OpenCV [47] libraries.
They may be grouped into following categories: image processing operations,
mask – related operations, feature extraction operations, and arithmetic and logic
operations.

Given the above settings, an LGP procedure P processes a single input image I in
following steps (see Figure 6.2):

1. Initialization of register contents: Each of the nreg image registers is set to I.
The masks of images are set to consecutive local features (here: bright ‘blobs’)
found in the image, so that mask in the ith image register encompasses ith local
feature. Real-number registers are set to the midpoint coordinates of
corresponding masks; in particular, real-number registers 2i and 2i+1 store the
x and y coordinates of the ith image mask.

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 109

2. Execution: the operations encoded by P are carried out one by one. As a
result, the contents of image and real-number registers change (see example in
Figure 6.2).

3. Interpretation: the values computed and stored in the real-value registers are
interpreted as the output yielded by P for image I. Let us denote by fi(P,I) the
value stored by P in the real-value register #i when processing image I. Then,
for an image I, the LGP procedure outputs a vector of features:

() () ()IPfIPfIPf
regn ,,,,,, 21 K

LGP procedure

Image register #1

Image register #2

Real-number register #1

- operation code - input argument - output argument - change of register’s value

Op #1: Image
norm

Op #2: Image
thresholding

Op #3: Add scalar
to each pixel

Initial register
contents

Register contents
after op#1

Register contents
after op#2

Register contents
after op#3

order of execution

Figure 6.2. Illustration of the process of genome interpretation during LGP procedure execution.

6.3.3 Cooperative Coevolution
To cope with the inherent complexity of the visual learning task, we should find a
way to decompose the problem into subtasks rather than trying to solve it in one
step. For that purpose, we use the cooperative coevolution, a variety of
evolutionary computation.

Evolutionary computation is widely recognized as a kind of metaheuristics, i.e.
general-purpose search algorithm that provides suboptimal solutions in
polynomial time. However, according to Wolpert’s ‘no free lunch’ theorem [63],
the search for an universal, best-of-all metaheuristic (optimization or learning)
algorithm is futile. In other words, the average performance of any metaheuristic
over a set of all possible fitness functions is the same.

In real world however, not all fitness functions are equally probable. Most real
problems are characterized by some features that make them specific. The
practical utility of a search/learning algorithm depends, therefore, on its ability to
detect and benefit from that specificity. In particular, the complexity of the
problem and the way it may be decomposed are such characteristics.

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 110

In the last few years, cooperative coevolution (CC) [56], a variety of EC, has been
reported as a promising approach to handle the increasing complexity of problems
posed in artificial intelligence and related disciplines. There are two important
factors that make CC different from standard EC. Firstly, instead of having just
one population of individuals, in CC one maintains many of them. Secondly,
individuals in particular population encode only part of the solution to the
problem, as opposed to EC, where each individual encodes complete solution to
the problem. Therefore, individuals from populations cannot be evaluated
independently; they have to be combined with some representatives from the
remaining populations to form a solution that can be evaluated. That is why
evolution proceeds here in each population independently, with the exception of
the evaluation stage. The joint evaluation scheme forces the individuals from
particular populations to cooperate.

Let n denote the number of populations. To evaluate an individual X from ith
population (Figure 6.3), it is temporarily combined with selected individuals (so
called representatives) from the remaining populations j, j=1,…, n, j≠i, to form
the solution. Then, the entire solution is evaluated by means of the fitness
function and X gets the resulting fitness value. Evaluation of an individual from
ith population does not affect the remaining populations. As a result, the
evolutionary search in a given population is driven by the context build up by the
representatives of remaining populations. The choice of representatives is,
therefore, critical for the convergence of the evolution process. Although many
different variants are possible here, it has been shown that so-called CCA-1
scheme works best [61]. In the first generation a representative of ith population is
an individual drawn randomly from it. In the following generations a
representative of ith population is the best individual w.r.t. the previous
generation.

initialize populations
loop

for each population
 for each individual X
 combine X with representatives of
 remaining populations to form solution S
 evaluate S
 assign fitness of S to X
 end for
 select mating candidates
 recombine parents and use their offspring as the
next
 generation
end for

until stopping condition
return best solution

Figure 6.3. Outline of cooperative coevolution algorithm.

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 111

The major advantage of CC is that it provides the possibility of breaking up a
complex problem into components without specifying explicitly the objectives for
them. The way the individuals from populations cooperate emerges as the
evolution proceeds. In [44] we provided experimental evidence for the usefulness
of CC in feature construction for standard machine learning problems. Here we
claim that CC is especially appealing also to the problem of visual learning, where
the overall target is well defined, but there is no a priori knowledge about what
should be expected at intermediate stages of processing, or such knowledge
requires an extra effort from the designer.

6.3.4 Combining Cooperative Coevolution and Linear Genetic
Programming
In the proposed approach, we use cooperative coevolution to scale down the task
of LGP procedure synthesis (Section 6.2). Although this can be done in many
different ways, in this initial contribution we break up the task at genome level,
with each population being responsible for optimizing a pre-defined fragment
(substring) of LGP code of fixed length (Figure 6.4).

... ...

Part synthesized by
population #1

...…

Part synthesized by
population #2

Part synthesized by
population n

Solution (complete LGP procedure P) order of LGP execution

Figure 6.4. Cooperation enforced by the concatenation of LGP procedure fragments developed by
particular populations.

The evaluation of an individual X from a given population consists in
concatenating (always in the same order) its genome with the genomes of the
representatives of the remaining populations to form a single LGP procedure P. P
is then executed for all images from the training set (see Section 6.2). The values
computed by P for all training images

() () () TIIPfIPfIPf
regn ∈∀,,,,,,, 21 K ,

together with the images’ class labels constitute the dataset T that is the basis for
evaluation of an individual (so-called fitness set). Then, a fast classifier is trained
and tested on these data (see Figure 6.1), using predefined internal division of the
training set into training-training set and training-testing set. For this purpose, we
used the naïve Bayesian classifier, modeling the input variables (features) by
normal distribution. The resulting predictive recognition ratio,

T
T

in images of # total
 from objects classifiedcorrectly of # ,

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 112

becomes the evaluation (fitness) of the solution-procedure P, and is subsequently
assigned to the individual X.

In this framework, particular populations can specialize in different stages of the
recognition task. In particular, we expect that the populations delegated to the
development of the early parts of LGP procedure would tend to specialize in
image processing, whereas the populations working on the final parts of the LGP
procedure would focus on feature extraction and aggregation.

6.4 Experiments
The objective of the computational experiments is to explore the overall idea of
LGP-based synthesis of recognition procedures using cooperative coevolution for
search, in the context of demanding, real-world object recognition task using
images of 3-D objects. The results are obtained using a PC with single Pentium
1.8 GHz processor.

To provide a reference solution, we run a separate series of standard linear genetic
programming (LGP), which, in fact, is a special case of CC that uses just one
population. To make this comparison reliable, we fix the total genome length (the
total procedure length is the same for both CC and standard LGP), and fix the
total number of individuals (the total number of individuals from all populations
in CC is equal to the number of individuals maintained in the single population of
the corresponding LGP run). To estimate the performance the learning algorithm
is able to attain in a limited time, evolution stops when its run time reaches the
predefined limit.

6.4.1 Parameter Setting

Table 6.2. Parameter setting.

Parameter Setting
Mutation operator one-point, prob. 0.5

Crossover operator
one-point, prob. 1.0, genome
cutting is allowed at every
point

Selection operator tournament selection with
tournament pool size = 5

Number or registers (image
and numeric) nreg

8

Number of populations n 3
Selection of representatives CCA-1 (see Section 3.3)
Time limit 1000 and 2000 seconds
Procedure length
(total genome length) 72 bytes, i.e., 18 operations

Total population size 300 - 900 individuals

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 113

Table 6.2 shows the details of parameter settings used for the experiments
described in this section. All the remaining parameters were set to default values
used in software packages ECJ [50] and WEKA [62].

6.4.2 Data and the Learning Task
The proposed approach has been tested on the demanding task of object
recognition in synthetic aperture radar (SAR) imagery. The MSTAR public
database [58] of SAR images taken at one foot resolution has been used as the
data source. The task posed to the system was to recognize three different objects
(decision classes): BRDM2, D7, and T62 (see Figure 6.4) at 15° depression angle
and any azimuth (0°-359°).

BRDM2 D7 T62

Figure 6.5. The representatives of three decision classes. Top row – visual photographs, bottom
row - corresponding 48×48 pixel SAR images.

The difficulties associated with the object recognition task in real SAR images
are:

• Non-literal nature of the data, i.e. radar images appear different than visual
ones. Bright spots on the images, called scattering centers, correspond to those
parts of the object which reflect radar signal strongly. No line features are
present for these man-made objects at this resolution.

• Low persistence of features under rotation (high rotation-variance).

• High levels of noise.

Table 6.3. Dataset statistics.

Class Total
Training

set
Aspect
interval

Testing
set

Aspect
interval

BRDM2 188 64 5.62° 124 2.90°
D7 188 64 5.62° 124 2.90°
T62 131 64 5.62° 67 5.37°
Total 507 192 315

Number of images

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 114

From the MSTAR database, 507 images of three objects classes (see Figure 6.5)
have been selected. The resulting set of images has been split into disjoint
training and testing parts to provide reliable estimate of the recognition ratio of
the learned recognition system (see Table 6.3). This selection was aimed at
providing uniform coverage of the azimuth (for each class, there is a training
image for approximately every 5.62° of azimuth, and a testing image every 2.9°-
5.37°, on the average).

The evolutionary process uses the training data for the learning/synthesis
(precisely speaking, for the fitness computation), whereas the testing images are
used for test only. The original images have different sizes, so they are cropped
to 48×48 pixels. They are also complex (2-channel), but only theirs magnitude
part is used in the experiments. No other form of preprocessing (e.g., speckle
removal) is applied.

6.5 Results
Table 6.4 compares the recognition performances obtained by the proposed
coevolutionary approach (CC) and its regular counterpart (LGP), for two different
limits imposed on the evolutionary learning time, 1000 and 2000 seconds. To
obtain statistical evidence, all evolutionary runs have been repeated 10 times, so
the table presents the average performances of the best individuals found.

The direct comparison resulting from Table 6.4 shows the superiority of the CC to
LGP. This applies to both the performance of the synthesized systems on the
training as well as on the test set. In all cases, the observed increases in accuracy
are statistically significant with respect to the one-sided t-Student test at the
confidence level 0.05. Note that, within the same time limit, CC usually ran for a
smaller number of generations on the average, due to the extra time required to
maintain (perform selection and mating) in multiple populations.

Figure 6.6 and Table 6.5 show, respectively, the receiver operating characteristics
(ROC) curves and confusion matrices for the best individuals found in the first
two experiments reported in Table 6.4 (time limit: 2000 seconds, procedure

Parameter setting Recognition ratio
Procedure length # of individuals 1000 seconds 2000 seconds Method

popu-
lations Each

population Total
Each

poplation Total
Train

set
Test
set

Train
Set

Test
Set

CC 3 24 72 100 300 0.915 0.867 0.933 0.890
LGP 1 72 72 300 300 0.806 0.747 0.843 0.801
CC 3 24 72 300 900 0.927 0.874 0.940 0.883

LGP 1 72 72 900 900 0.839 0.795 0.881 0.830

Table 6.4. The average performances of best individuals evolved in 10 independent runs for 1000
and 2000 seconds training time limit.

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 115

length: 72, total # of individuals: 300). Each curve shows the true positive ratio,
i.e., the share of correctly recognized objects, as a function of false positive ratio,
i.e., the share of incorrectly classified objects (without taking into account the
non-recognized objects).

These parametric characteristics have been obtained from the test set, by varying
the confidence threshold of the naïve Bayesian classifier. Approximately 40
different values of the threshold have been used to obtain the curves. The
confidence threshold imposes a lower limit on the ratio of a posteriori
probabilities of the first and the second most probable decision classes. If, for a
particular test example, the ratio is lower than threshold, no recognition decision
is made and the example remains unclassified. The ROC curves clearly show the
superiority of the coevolution. For instance, when no more than 5% of false
positives are allowed, the procedure evolved using CC recognizes correctly
approximately 91% images, whereas for LGP the accuracy is around 68%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
False positive ratio

Tr
ue

 p
os

itiv
e

ra
tio

CC (Area under ROC curve: 0.956)

LGP (Area under ROC curve: 0.909)

Figure 6.6. ROC curves obtained for the test set using the best individuals found in the first two
experiments shown in Table 6.4.

Figure 6.7 presents the processing carried out on a BDRM2 image (taken at
342.3° aspect) by the best procedure found in one of evolutionary runs. For
clarity, the picture shows the interpretation of the LGP procedure in a form of
data-flow graph. Note that this procedure uses only first four of the total of eight
image registers available. Each column of images in the picture shows the
content changes of particular image register.

The execution of the LGP procedure starts from the top and proceeds downwards
through several intermediate image-processing steps. Rounded and slanted boxes
denote global (working on the entire image) and local (working on the marked
rectangular ROI mask) image processing operations, respectively. Eventually,
two of the executed operations yield scalar features (the x coordinate of the
shifted ROI (f1(X,I)), and the normalized difference of two processed images

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 116

f2(X,I)). The overall processing ends with the final recognition decision made by
the (previously trained on the training set) classifier; this includes a posteriori
probabilities yielded by the naïve Bayesian classifier.

The operations used in this particular are: AbsDiff – pixel-wise absolute
difference of a pair of images, HiPass3x3 – high pass convolution filter using 3×3
mask, CrossCorrel – cross-correlation of a pair of images, PushROIX – (local)
shifts the current image’s ROI to the closest bright ‘blob’ in horizontal direction,
Gaussian – (local) image smoothing using 3×3 Gaussian mask, MorphClose –
morphological closing operation, LogicalOr – pixel-wise logical ‘OR’ operation.

Table 6.5. Confusion matrices for the test set using the best individuals found in the first two
experiments shown in Table 6.4.

CC
Actual class BRDM2 D7 T62 None
BRDM2 118 1 4 1
D7 5 114 3 2
T62 5 1 61 0

LGP
Actual class BRDM2 D7 T62 None
BRDM2 97 3 22 2
D7 0 115 9 0
T62 1 0 66 0

Predicted class

Predicted class

Note that, commonly for genetic programming, not all input data (initial register
contents) and not all intermediate results are utilized for the final decision making
(e.g., the result of the cross-correlation operation (CrossCorrel) is not further
processed).

6.6 Summary
In this chapter, we proposed a general evolutionary learning method that enables
the learner to acquire knowledge from complex/structural examples by
autonomously transforming the input representation. The described formulation
of feature construction addresses two important issues. (1) The elementary
operations give the learner an access to complex, structural input data that
otherwise could not be directly used. (2) By incorporating the feature synthesis
into the learning loop, the learner searches for performance improvement by
modifying the input representation.

In experimental part, we provided an evidence for the possibility of solving, using
the proposed approach, a demanding real-world task of visual learning. The
encouraging results for SAR object recognition have been obtained without
recurring to means that are commonly used in conventional approaches to the
design of recognition systems, such as resorting to the database of object models,

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 117

explicit estimation of object pose, hand-tuning of basic operations for a specific
application, and, in particular, SAR-specific concepts or features like ‘scattering
center’.

Our approach learns in a fully automatic manner, and, therefore, at a little expense
of human labor and expertise. The learning process requires only training data
that is usually easy to acquire, i.e. images and their class labels, and does not rely
on domain-specific knowledge, using only general vision-related knowledge
encoded in basic operations. The objectivity of the learning process makes the
results free from subjective flaws and biases, which the human-designed solutions
are prone to.

f1=20

Classifier

Initial register contents

Output:
recognition

BDRM2: 0.92
D7: 0.01
T62: 0.07

CrossCorrel

HiPass3x3

MorphClose

Logical Or

NormDiff

f2=173190

AbsDiff

PushROI X

Gaussian

Figure 6.7. A fragment of synthesized processing graph of a selected best-of-run procedure
evolved by means of cooperative coevolution, processing an exemplary image (only 4 of total 8
registers are used by this procedure).

The proposed method may be characterized as feature-based. Compared to the
model-based recognition approaches, there is no need for, possibly expensive,

Chapter 6: Feature Synthesis for Recognition Using Linear Genetic Programming

 118

matching an image with models from the database. Thus, our synthesized
recognition system attains high recognition speed during the runtime. The
average time required by the entire recognition process, starting from the raw
image and ending up with the final recognition result, totaled 4.9 ms on the
average, for a single 48×48 image and an LGP procedure composed of 18
operations. This time could be significantly reduced after re-implementing the
synthesized system and, in particular, the classifier that is written in Java. We
claim that this impressive recognition speed makes our approach suitable for real-
time application.

Since the task-related knowledge is not required, our approach is general and
possibly applicable to other recognition tasks. We claim that, therefore, a new
paradigm for visual learning has been developed, that focuses on automatic
learning of pattern analysis procedures composed of relatively simple, general-
purpose image processing and feature extraction building blocks, as opposed to
the tendency of designing highly specialized procedures for particular recognition
tasks.

From machine learning viewpoint, this result is an outstanding argument in favor
of CC for tackling complex learning problems. The ability of coevolution to
break up complex problems into subproblems without requiring explicit
objectives/goals for them, offers an interesting research direction for ML, when
complex learning tasks are involved.

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 119

Chapter 7

Coevolution and Linear Genetic
Programming for Recognition-
Further Extensions

In this chapter, we provide further details and extend the approach presented in
Chapter 6. Given the training images, this general approach induces a
sophisticated feature-based recognition system, by using cooperative coevolution
and linear genetic programming for the procedural representation of feature
extraction agents. An extensive experimental evaluation, on the demanding real-
world task of object recognition in synthetic aperture radar (SAR) imagery, shows
the competitiveness of the proposed approach with human-designed recognition
systems.

7.1 Introduction
Most real-world learning tasks concerning visual information processing are
inherently complex. This complexity results not only from the large volume of
data that one usually needs to process, but also from its spatial nature, information
incompleteness, and, most of all, from the vast number of hypotheses that have to
be considered in the learning process and the ‘ruggedness’ of the fitness
landscape. Therefore, the design of a visual learning algorithm mostly consists in
modeling its capabilities so that it is effective in solving the problem. To induce
useful hypotheses on one hand and avoid overfitting to the training data on the
other, some assumptions have to be made, concerning training data and
hypothesis representation, known as inductive bias and representation bias,
respectively. In visual learning, these biases have to be augmented by an extra
‘visual bias’, i.e., knowledge related to the visual nature of the information being
subject to the learning process. A part of that is general knowledge concerning
vision (background knowledge, BK), for instance, basic concepts like pixel
proximity, edges, regions, primitive features, etc. However, usually a more

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 120

specific domain knowledge (DK) related to a particular task/application (e.g.,
fingerprint identification, face recognition, etc.) is also required. Currently, most
recognition methods make intense use of DK to attain a competitive performance
level. This is, however, a double-edged sword, as the more DK the method uses,
the more specific it becomes and the less general and transferable is the
knowledge it acquires. The contribution of such over-specific methods to the
overall body of knowledge is questionable.

Therefore, in this chapter, we propose a general-purpose visual learning method
that requires only BK and produces a complete recognition system that is able to
classify objects in images. To cope with the complexity of the recognition task,
we break it down into components. However, the ability to identify building
blocks is a necessary, but not a sufficient, precondition for a successful learning
task. To enforce learning in each identified component, we need an evaluation
function that spans over the space of all potential solutions and guides the learning
process. Unfortunately, when no a priori definition of module’s ‘desired output’
is available, this requirement is hard to meet. This is why we propose to employ
here cooperative coevolution [56], as it does not require the explicit specification
of objectives for each component.

7.2 Related Work and Contributions
No general methodology has been developed so far that effectively automates the
visual learning process. Several methods have been reported in the literature;
they include blackboard architecture, case-based reasoning, reinforcement
learning, and automatic acquisition of models, to mention the most predominant.
The paradigm of evolutionary computation (EC) has also found applications in
image processing and analysis. It has been found effective for its ability to
perform global parallel search in high-dimensional search spaces and to resist the
local optima problem. However, in most approaches the learning is limited to
parameter optimization. Relatively few results have been reported [66, 53, 59,
60], that perform visual learning in the deep sense, i.e., with a learner being able
to synthesize and manipulate an entire recognition system.

The major contribution of this chapter is a general method that, given only a set
of training images, performs visual learning and yields a complete feature-based
recognition system. Its novelty consists mostly in (i) procedural representation
of features for recognition, (ii) utilization of coevolutionary computation for
induction of image representation, and (iii) a learning process that optimizes the
image feature definitions, prior to classifier induction.

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 121

7.2.1 Coevolutionary Construction of Feature Extraction
Procedures
We pose visual learning as the search of the space of image representations (sets
of features). For this purpose, we propose to use cooperative coevolution (CC)
[56], which, besides being appealing from the theoretical viewpoint, has been
reported to yield interesting results in some experiments [61]. In CC, one
maintains many populations, with individuals in populations encoding only a part
of the solution to the problem. To undergo evaluation, individuals have to be
(temporarily) combined with individuals from the remaining populations to form
an organism (solution). This joint evaluation scheme forces the populations to
cooperate. Except for this evaluation step, other steps of evolutionary algorithm
proceed in each population independently.

According to Wolpert’s ‘No Free Lunch’ theorem [63], the choice of this
particular search method is irrelevant, as the average performance of any
metaheuristic search over a set of all possible fitness functions is the same. In the
real world, however, not all fitness functions are equally probable. Most real-
world problems are characterized by some features that make them specific. The
practical utility of a search/learning algorithm depends, therefore, on its ability to
detect and benefit from those features.

The high complexity and decomposable nature of the visual learning task are
such features. Cooperative coevolution seems to fit them well, as it provides the
possibility of breaking up a complex problem into components without specifying
explicitly the objectives for them. The manner in which the individuals from
populations cooperate emerges as the evolution proceeds. In our opinion, this
makes CC especially appealing to the problem of visual learning, where the
overall object recognition task is well defined, but there is no a priori knowledge
about what should be expected at intermediate stages of processing, or such
knowledge requires an extra effort from the designer.

In [44], we provide experimental evidence for the superiority of CC-based
feature construction over standard EC approach in the standard machine learning
setting; here, we extend this idea to visual learning. Following the feature-based
recognition paradigm, we split the object recognition process into two modules:
feature extraction and decision-making. The algorithm learns from a finite
training set of examples (images) D in a supervised manner, i.e. requires D to be
partitioned into finite number of pairwise disjoint decision classes Di.

In the coevolutionary run, n populations cooperate in the task of building the
complete image representation, with each population responsible for evolving one
component. Therefore, the cooperation here may be characterized as taking place
at the feature level. In particular, each individual I from a given population
encode a single feature extraction procedure. For clarity, details of this encoding
are provided in Section 7.4.

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 122

Organism EvaluationPopulation

#1

Population
#i

Population
#n

Representative I1
*

Representative In
*

Basic image
processing
operations

Cross-validation
experiment

…

Fitness
value
f(O,D)

Feature vectors Y(X)
for all training images X∈D

Training
images D

LGP program
interpreter

Fast
classifier Cfit

…

Representative I1
*

Predictive
accuracy

Organism O

Individual Ii

Figure 1. The evaluation of an individual Ii from ith population.

The coevolutionary search proceeds in all populations independently, except for
the evaluation phase, shown in Figure 1. To evaluate an individual Ij from
population #j, we first provide for the remaining part of the representation. For
this purpose, representatives *

iI are selected from all the remaining populations

i≠j. A representative *
iI of ith population is defined here in a way that has been

reported to work best [61]: it is the best individual w.r.t. the previous evaluation.
In the first generation of evolutionary run, since no prior evaluation data is given,
it is a randomly chosen individual.

Subsequently, Ij is temporarily combined with representatives of all the remaining
populations to form an organism

**
1

*
1

*
1 ,,,,,, njjj IIIIIO KK +−= . (7.1)

Then, the feature extraction procedures encoded by individuals from O are ‘run’
(see Section 7.4) for all images X from the training set D. The feature values y
computed by them are concatenated, building the compound feature vector Y:

),(,),,(),,(),,(,),,()(**
1

*
1

*
1 XIXIXIXIXIX njjj yyyyyY KK +−= . (7.2)

Feature vectors Y(X), computed for all training images X∈D, together with the
images’ decision class labels constitute the dataset:

},:),({ ii DDXiX ∀∈∀Y (7.3)

Finally, cross-validation, i.e. multiple train-and-test procedure is carried out on
these data. For the sake of speed, we use here a fast classifier Cfit that is usually
much simpler than the classifier used in the final recognition system. The
resulting predictive recognition ratio (see equation 4) becomes the evaluation of
the organism O, which is subsequently assigned as the fitness value to f () the
individual Ij, concluding its evaluation process:

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 123

{ }())(,,))((,),(
),(),(

/ DcardDiXCDXiXcard
DOfDIf

ii

j

∀=∧∈∀=
==

YY

(7.4)

where card() denotes cardinality of a set. Using this evaluation procedure, the
coevolutionary search proceeds until some stopping criterion (usually considering
computation time) is met. The final outcome of the coevolutionary run is the best
found organism/representation O*.

7.2.2 Representation of Feature Extraction Procedures
For representing the feature extraction procedures as individuals in the
evolutionary process, we adopt a variety of Linear Genetic Programming (LGP)
[43], a hybrid of genetic algorithms (GA) and genetic programming (GP). The
individual’s genome is a fixed-length string of bytes, representing a sequential
program composed of (possibly parameterized) basic operations that work on
images and scalar data. This representation combines advantages of both GP and
GA, being both procedural and more resistant to the destructive effect of
crossover that may occur in ‘regular’ GP [43].

A feature extraction procedure accepts an image X as input and yields a vector y
of scalar values as the result. Its operations are effectively calls to image
processing and feature extraction functions. They work on registers, and may use
them for both input as well as output arguments. Image registers store processed
images, whereas real-number registers keep intermediate scalar results features.
Each image register has single channel (grayscale), the same dimensions as the
input image X, and maintains a rectangular mask that, when used by an operation,
limits the processing to its area. For simplicity, the numbers of both types of
registers are controlled by the same parameter m.

Each chunk of four consecutive bytes in the genome encodes a single operation
with the following components:

(a) operation code,

(b) mask flag – decides whether the operation should be global (work on the
entire image) or local (limited to the mask),

(c) mask dimensions (ignored if the mask flag is ‘off’),

(d) arguments: references to registers to fetch input data and store the result.

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 124

Operation
decoding/
interpretation

op
code

Operation #1

Image registers

241 32 16 1945 189 211 11 44 78 131168 …

Operation #3Operation #2

Interpreter’s reading head shifts over genome
to read and execute consecutive operations

Library of basic
image processing

and feature extraction
procedures

Register access
(read/write)

Procedure
call

Working memory
morph_open(R1,R2)

arguments

Real-number registers

r1 r2 rm…

Genome
of individual I
(LGP program)

Initial contents:
copies of the
input image X
with masks set to
distinctive featuresR1 R2 Rm…
Feature values
yi(X), i=1,…,m
fetched from here
after execution
of entire
LGP program

Figure 7.2. Execution of LGP code contained in individual’s I genome (for a single image X).

Figure 7.2 shows the execution at the moment of executing the following
operation: morphological opening (a), applied locally (b) to the mask of size
14×14 (c) to the image fetched from image register pointed by argument #1, and
storing the result in image register pointed by argument #2 (d). There are
currently 70 operations implemented in the system. They mostly consist of calls
to functions from Intel Image Processing and OpenCV libraries, and encompass
image processing, mask-related operations, feature extraction, and arithmetic and
logic operations.

The processing of a single input image X ∈ D by the LGP procedure encoded in
an individual I proceeds as follows (Figure 7.2):

1. Initialization: Each of the m image registers is set to X. The masks of images
are set to the m most distinctive local features (here: bright ‘blobs’) found in the
image. Real-number registers are set to the center coordinates of corresponding
masks.

2. Execution: the operations encoded by I are carried out one by one, with
intermediate results stored in registers.

3. Interpretation: the scalar values yj(I,X), j=1,…,m, contained in the m real-value
registers are interpreted as the output yielded by I for image X. The values are
gathered to form an individual’s output vector

),(,),,(),(1 XIyXIyXI mK=y , (7.5)

that is subject to further processing described in Section 7.3.

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 125

7.2.3 Architecture of the Recognition System
The overall recognition system consists of: (i) the best feature extraction
procedures O* constructed using the approach described in Sections 7.3 and 7.4,
and (ii) classifiers trained using those features.

We incorporate a multi-agent methodology that aims to compensate for the
suboptimal character of representations elaborated by the evolutionary process
and allows us to boost the overall performance.

Recognition subsystem #nsub

Recognition subsystem #2

Input
image

X

Recognition subsystem #1

Classifier
C

Synthesized
representation O*

Y(X) C(Y(X))
Voting

Final
decision

…

Figure 7.3. The top-level architecture of recognition system.

The basic prerequisite for the agents’ fusion to become beneficial is their
diversification. This may be ensured by using homogenous agents with different
parameter settings, homogenous agents with different training data (e.g., bagging
[65]), heterogeneous agents, etc. Here, the diversification is naturally provided by
the random nature of the genetic search. In particular, we run many genetic
searches that start from different initial states (initial populations). The best
representation O* evolved in each run becomes a part of a single subsystem in the
recognition system’s architecture (see Figure 7.3). Each subsystem has two major
components: (i) a representation O*, and (ii) a classifier C trained using that
representation. As this classifier training is done once per subsystem, a more
sophisticated classifier C may be used here (as compared to the classifier Cfit used
in the evaluation function).

The subsystems process the input image X independently and output recognition
decisions that are further aggregated by a simple majority voting procedure into
the final decision. The subsystems are therefore homogenous as far as the
structure is concerned; they only differ in the features extracted from the input
image and the decisions made. The number of subsystems nsub is a parameter set
by the designer.

7.3 Experimental Results
The primary objective of the computational experiment is to test the scalability of
the approach with respect to the number of decision classes and its sensitivity to
various types of object distortions. As an experimental testbed, we choose the
demanding task of object recognition in synthetic aperture radar (SAR) images.

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 126

There are several difficulties that make recognition in this modality extremely
hard:

• poor visibility of objects – usually only prominent scattering centers are visible,

• low persistence of features under rotation, and

• high levels of noise.

The data source is the MSTAR public database [58] containing real images of
several objects taken at different azimuths and at 1-foot spatial resolution. From
the original complex (2-channel) SAR images, we extract the magnitude
component and crop it to 48×48 pixels. No other form of preprocessing is
applied.

ZSU 23/4

BRDM ZIL131

T72#A04

Figure 7.4. Selected objects and their SAR images used in the learning experiment.

The following parameter settings are used for each coevolutionary run: number of
subsystems nsub: 10; classifier Cfit used for feature set evaluation: decision tree
inducer C4.5 [63]; mutation operator: one-point, probability 0.1; crossover
operator: one-point, probability 1.0, cutting allowed at every point; selection
operator: tournament selection with tournament pool size = 5; number of registers
(image and numeric) m: 2; number of populations n: 4; genome length: 40 bytes
(10 operations); single population size: 200 individuals; time limit for
evolutionary search: 4000 seconds (Pentium PC 1.4 GHz processor).

A compound classifier C is used to boost the recognition performance. In
particular, C implements the ‘1-vs.-all’ scheme, i.e. it is composed of l base
classifiers (where l is the number of decision classes), each of them working as a
binary (two-class) discriminator between a single decision class and all the
remaining classes. To aggregate their outputs, a simple decision rule is used that
yields final class assignment only if the base classifiers are consistent and indicate
a single decision class. With this strict rule, any inconsistency among the base
classifiers (i.e., no class indicated or more than one class indicated) disables
univocal decision and the example remains unclassified (assigned to ‘No
decision’ category).

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 127

The system’s performance is measured using different base classifiers (if not
stated otherwise, the classifier uses default parameter settings as specified in
[62]):

• support vector machine with polynomial kernels of degree 3 (trained using
sequential minimal optimization algorithm [68] with complexity parameter set
to 10),

• nonlinear neural networks with sigmoidal units trained using backpropagation
algorithm with momentum,

• C4.5 decision tree inducer [69].

7.3.1 Scalability

To investigate the scalability of the proposed approach w.r.t. to the problem size,
we use several datasets with increasing numbers of decision classes for a 15-deg.
depression angle, starting from l=2 decision classes: BRDM2 and ZSU.
Consecutive problems are created by adding the decision classes up to l=8 in the
following order: T62, Zil131, a variant A04 of T72 (T72#A04 in short), 2S1,
BMP2#9563, and BTR70#C71.

For ith decision class, its representation Di in the training data D consists of two
subsets of images sampled uniformly from the original MSTAR database with
respect to a 6-degree azimuth step. Training set D, therefore, always contains
2*(360/6)=120 images from each decision class, so its total size is 120*l. The
corresponding test set T contains all the remaining images (for a given object and
elevation angle) from the original MSTAR collection. In this way, the training
and test sets are strictly disjoint. Moreover, the learning task is well represented
by the training set as far as the azimuth is concerned. Therefore, there is no need
for multiple train-and-test procedures here and the results presented in the
following all use this single particular partitioning of MSTAR data.

Let nc, ne, and nu, denote respectively the numbers of test objects correctly
classified, erroneously classified, and unclassified by the recognition system.
Figure 7.5(a) presents the true positive rate, i.e. Ptp=nc/(nc+ne+nu), also known as
probability of correct identification (PCI), as a function of the number of decision
classes. It can be observed, that the scalability depends heavily on the base
classifier, and that SVM clearly outperforms its rivals. For this base classifier, as
new decision classes are added to the problem, the recognition performance
gradually decreases. The major drop-offs occur when T72 tank and 2S1 self-
propelled gun (classes 5 and 6, respectively), are added to the training data; this is
probably due to the fact that these objects are visually similar to each other (e.g.,
both have gun turrets) and significantly resemble the T62 tank (class 3). On the
contrary, introducing consecutive classes 7 and 8 (BMP2 and BTR60) did not
affect the performance much; more than this, an improvement of accuracy is even
observable for class 7.

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 128

1.000

.961 .964

.929

.899
.910 .906

.7

.8

.9

1.0

2 3 4 5 6 7 8
of decision classes

(a)

Tr
ue

 p
os

itiv
e

ra
te

SVM
NN
C4.5

.70

.75

.80

.85

.90

.95

1.00

0 0.2 0.4 0.6 0.8 1
False positive rate

(b)
Tr

ue
 p

os
itiv

e
ra

te

3 classes
4 classes
5 classes
6 classes
7 classes
8 classes

Figure 7.5. (a) Test set recognition ratio as a function of number of decision classes. (b) ROC
curves for different number of decision classes (base classifier: SVM).

Figure 7.5(b) shows the receiver operating characteristics (ROC) curves
obtained, for the recognition systems using SVM as a base classifier, by
modifying the confidence threshold that controls whether the classifier votes. The
false positive rate is defined here as Pfp=ne/(nc+ne+nu). Again, the results support
our method: the curves do not drop rapidly as the false positive rate decreases.
Therefore, very high accuracy of classification, i.e., nc/(nc+ne), may be obtained
when accepting a reasonable rejection rate nu/(nc+ne+nu). For instance, for 4
decision classes, when Pfp=0.008, Ptp=0.885 (see marked point in Figure 7.5(b)),
and, therefore, rejection rate is 1-(Pfp+Ptp)=0.107, the accuracy of classification
equals 0.991.

7.3.2 Object variants

A desirable property of an object recognition system is its ability to recognize
different variants of the same object. This task may pose some difficulties, as
configurations of vehicles often vary significantly. To provide a comparison with
human-designed recognition system, we use the conditions of the experiment
reported in [64]. In particular, we synthesized recognition systems using:

• 2 objects: MP2#C21, T72#132,

• 4 objects: MP2#C21, T72#132, BTR70#C71, and ZSU23/4.

For both of these cases, the testing set includes two other variants of BMP2
(#9563 and #9566), and two other variants of T72 (#812 and #s7).

The results of the test set evaluation shown in the confusion matrices (Table 7.1)
suggest that, even when the recognized objects differ significantly from the

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 129

models provided in the training data, the approach is still able to maintain high
performance. Here the true positive rate Ptp equals 0.804 and 0.793, for 2- and 4-
class systems, respectively. For the cases where a decision can be made (83.3%
and 89.2%, respectively), the values of classification accuracy, 0.966 and 0.940,
respectively, are comparable to the forced recognition results of the human-
designed recognition algorithms reported in [64], which are 0.958 and 0.942,
respectively. Note that in the test, we have not used ‘confusers’, i.e. test images
from different classes that those present in the training set, as opposed to [64],
where BRDM2 armored personnel carrier has been used for that purpose.

Table 7.1. Confusion matrices for recognition of object variants.

BMP2 T72 No BMP2 T72 BTR ZSU No
Object Serial # [#C21] [#132] decision [#C21] [#132] [#C71] [#d08] decision
BMP2 [#9563,9566] 295 18 78 293 27 27 1 43

T72 [#812,s7] 4 330 52 12 323 1 9 41

Test objects
2-class system

Predicted class
4-class system

y1=20

Initial
register
contents

CrossCorrellation

HiPass3x3 MorphClose

Logical Or

NormDiff y2=173190

AbsDiff

PushROI X

Feature values
y(I,X)

Input
image
X

Graph of processing
encoded by

LGP individual I

Gaussian

Figure 7.6. Processing carried out by one of the evolved procedures shown as a graph (small
rectangles in images depict masks; boxes: local operations; rounded boxes: global operations).

Chapter 7: Coevolution and Linear Genetic Programming for Recognition-Further Extensions

 130

7.4 Summary
In this contribution, we provide experimental evidence for the possibility of
synthesizing, without or with little human intervention, a feature-based
recognition system, which recognizes 3D objects at the performance level that can
be comparable to handcrafted solutions. Let us emphasize that these encouraging
results are obtained in the demanding field of SAR imagery, where the acquired
images only roughly depict the underlying 3D structure of the object.

There are several major factors that contribute to the overall high performance of
the approach. First of all, the paradigm of coevolution allows us to decompose
the task of representation (feature set) construction into several semi-independent,
cooperating subtasks. In this way, we exploit the inherent modularity of the
learning process, without the need of specifying explicit objectives for each
developed feature extraction procedure. Secondly, the approach manipulates
LGP-encoded feature extraction procedures, as opposed to most approaches,
which are usually limited to learning meant as parameter optimization. This
allows for learning sophisticated features, which are novel and sometimes very
different from expert’s intuition, as may be seen from example shown in Figure
7.6. And thirdly, the fusion at feature and decision level helps us to aggregate
sometimes contradictory information sources and build a recognition system that
is comparable to human-designed system performance with a bunch of simple
components at hand.

Chapter 8: Conclusions

 131

Chapter 8

Conclusions

This report investigates the efficacy of evolutionary computation such as genetic
programming, genetic algorithms and linear genetic programming in learning and
selecting features for object detection and object recognition. The reason for
incorporating learning into object detection and recognition is to avoid the time
consuming process of feature generation and selection. With learning
incorporated, an object detection and recognition system

(a) can automatically explore many unconventional features that may yield
exceptionally good detection and recognition performances in some cases, thus,
overcoming human expert limitation of concentrating only on a small number of
conventional features; and

(b) becomes more flexible and is able to automatically generate features on the fly
particularly effective to the type of objects and images encountered.

The ultimate goal is to lower the cost of designing object detection and
recognition systems and build more robust and flexible systems with human-
competitive performance.

The key contributions of this research are:

• We investigate the effectiveness of genetic programming in synthesizing
composite operators and composite features for object detection. We show
that GP is effective in synthesizing composite operators based on domain-
independent primitive operators and domain-independent primitive feature
images that can be easily generated from the original image for object
detection. The synthesized composite operators can be applied to other testing
images similar to the training image. The composite features learned by GP
are much more effective than the human-designed primitive features from
which they are built. The GP learned composite features may not be imagined
by human experts, since these unconventional features are very difficult, if not
impossible, to be explained by human experts. Thus, the learning method is
of great help in the design of object detection and recognition systems.

• We design an MDL-based fitness function and smart GP operators to improve
the efficiency of genetic programming. MDL-based fitness function is

Chapter 8: Conclusions

 132

proposed to address the well-known code bloat problem of GP. The MDL-
based fitness function takes the size of a composite operator into the fitness
evaluation process to prevent composite operators from growing too large
without setting a hard limit on the size of a composite operator, imposing
relatively less restrictions on the GP search and greatly improving the GP
efficiency. To further improve the efficiency of genetic programming, smart
crossover and smart mutation are proposed to identify and prevent the
effective components of composite operators from being disrupted by
destructive crossover and mutation. Also, a public library is set up to keep
effective components for later reuse. Compared to traditional genetic
programming, the smart GP driven by the MDL-based fitness function and
equipped with smart crossover and smart mutation synthesizes composite
operators with better performance and smaller size, reducing the
computational expense during recognition and the possibility of overfitting the
training images.

• We propose an MDL-based fitness function to drive GA in the selection of
features for object detection and recognition. The performance of the MDL-
based fitness function is compared with those of three other fitness functions.
The MDL-based fitness function balances the number of feature selected and
the recognition error rate very well and it is the best fitness function compared
to other three functions used in the literature. With fewer features selected,
the computational expenses and the possibility of overfitting the training data
are reduced.

• We propose a coevolutionary genetic programming (CGP) approach to learn
composite features for object recognition. The knowledge about the problem
domain is incorporated in primitive features that are used as terminals in the
synthesis of composite features by CGP using domain independent primitive
operators. The motivation for using CGP is to overcome the limitations of
human experts who consider only a small number of conventional
combinations of primitive features during synthesis. CGP, on the other hand,
can try a very large number of unconventional combinations and these
unconventional combinations yield exceptionally good results in some cases.
Our experimental results with real synthetic aperture radar (SAR) images
show that CGP can learn good composite features. We show results to
distinguish objects from clutter and to distinguish objects that belong to
several classes.

• We propose linear genetic programming in conjunction with cooperative
coevolution for feature synthesis for object recognition. General-purpose
image processing/computer vision libraries are used for feature synthesis. We
show that coevolution is more efficient than genetic algorithms. We consider
various strategies for multi-class target recognition. We consider cooperation

Chapter 8: Conclusions

 133

at various levels and show recognition results for eight classes of MSTAR
dataset.

In conclusion, evolutionary computation has a great promise and a strong
potential to automate the design of target and pattern recognition systems and
provide a human competitive performance.

Bibliography
[1] A. Teller, “Algorithm evolution with internal reinforcement for signal

understanding,” PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA, 1998.

[2] A. Ghosh and S. Tsutsui (Eds.), “Advances in Evolutionary Computing –
Theory and Application,” Springer-Verlag, 2003.

[3] B. Bhanu, D. Dudgeon, E. Zelnio, A. Rosenfeld and D. Casasent (Eds.),
“Special Issue on Automatic Target Recognition,” IEEE Transactions on
Image Processing, Vol. 6, No. 1, January 1997.

[4] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs, MIT Press, 1994.

[5] C. Harris and B. Buxton, “Evolving edge detectors with genetic
programming,” Proceedings of the Genetic Programming, 1st Annual
Conference, pp. 309-314, Cambridge, MA, USA, MIT Press, 1996.

[6] R. Poli, “Genetic programming for feature detection and image
segmentation,” in Evolutionary Computation, T. C. Forgarty (Ed.), pp. 110-
125, 1996.

[7] B. Bhanu and Y. Lin, “Learning composite operators for object detection”,
Proceedings of the Genetic and Evolutionary Computation Conference, pp.
1003-1010, July 2002.

[8] S. A. Stanhope and J. M. Daida, “Genetic programming for automatic target
classification and recognition in synthetic aperture radar imagery,”
Proceeding Conference on Evolutionary Programming VII., pp. 735-744,
1998.

[9] D. Howard, S. C. Roberts, and R. Brankin, “Target detection in SAR imagery
by genetic programming,” Advances in Engineering Software, Vol. 30, No.
5, pp. 303-311, Elsevier, May 1999.

[10] S. C. Roberts and D. Howard, “Evolution of vehicle detectors for infrared
line scan imagery,” Proceedings of the Evolutionary Image Analysis, Signal
Processing and Telecommunications, First European Workshops,
EvoIASP’99 and EuroEcTel’99, Berlin, Germany, pp. 110-125, Springer-
Verlag, 1999.

[11] B. Bhanu and S. Fonder, “Learning-integrated interactive image
segmentation,” chapter in Advances in Evolutionary Computing – Theory
and Application, A. Ghosh and S. Tsutsui (Eds.), pp. 863 – 895, Springer-
Verlag, 2003.

[12] J. Rissanen, “A Universal Prior for Integers and Estimation by Minimum
Description Length,” Ann. of Statist, Vol. 11, No. 2, pp. 416-431, 1983.

 134

[13] W. Tackett, “Recombination selection, and the genetic construction of
computer programs,” Ph.D thesis, University of Southern California,
Department of Electrical Engineering-Systems, 1994.

[14] P. D’haeseleer, “Context preserving crossover in genetic programming,”
Proceedings of the IEEE World Congress on Computational Intelligence,
Vol. 1, pp. 256 – 261, 1994.

[15] P. Smith, “Conjugation – A bacterially inspired form of genetic
recombination,” In J. R. Koza (Ed.), Late Breaking Papers at the Genetic
Programming Conference, pp. 167 – 176, 1996.

[16] T. Ito, H. Iba and S. Sato, “Depth-dependent crossover for genetic
programming,” Proceedings of the IEEE International Conference on
Evolutionary Computation, pp. 775-780, 1998.

[17] B. Bhanu and Y. Lin, “Learning feature agents for extracting terrain regions
in remotely sensed images,” Proceedings of the 2nd Pattern Recognition for
Remote Sensing Workshop, pp 1-6, August 12, 2002.

[18] W. B. Langdon and R. Poli, “Foundations of Genetic Programming,”
Springer, 2001.

[19] D. Kreithen, S. Halversen and G. Owirka, “Discriminating targets from
clutter,” Lincoln Laboratory Journal, Vol. 6, No. 1, pp. 25–52, Spring
1993.

[20] S. Cagnoni, A. Dobrzeniecki, R. Poli and J. Yanch, “Genetic algorithm-
based interactive segmentation of 3D medical images,” Image and Vision
Computing, Vol. 17, No. 12, pp. 881-895, October 1999.

[21] B. Bhanu and T. Poggio (Eds.), “Special Section on Machine Learning in
Computer Vision,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 16, No. 9, September 1994.

[22] M. Rizki, L. Tamburino and M. Zmuda, “Multi-resolution feature extraction
from Gabor filtered images,” Proceedings of the IEEE National Aerospace
and Electronics Conference, pp. 24-28, Dayton, OH, USA, May 1993.

[23] A. Katz and P. Thrift, “Generating image filters for target recognition by
genetic learning,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 16, No. 9, September 1994.

[24] E. Ozcan and C. Mohan, “Partial shape matching using genetic algorithms,”
Pattern Recognition Letters, Vol. 18, pp. 987-992, 1997.

[25] R. Srikanth, R. George, N. Warsi, D. Prabhu, F. Petry and B. Buckles, “A
variable-length genetic algorithm for clustering and classification,” Pattern
Recognition Letters, Vol. 16, pp. 789-800, 1995.

 135

[26] W. Punch and E. Goodman, “Further research on feature selection and
classification using genetic algorithms,” Proceedings of the 5th International
Conference on Genetic Algorithms, pp. 557-564, 1993.

[27] B. Bhanu and S. Lee, Genetic Learning for Adaptive Image Segmentation,
Kluwer Academic Publishers, 1994.

[28] C. Emmanouilidis, A. Hunter, J. MacIntyre and C. Cox, “Multiple-criteria
genetic algorithms for feature selection in neuro-fuzzy modeling,”
Proceedings of the International Joint Conference on Neural Networks, Vol.
6, pp. 4387-4392, 1999.

[29] P. Estevez and R. Caballero, “A niching genetic algorithm for selecting
features for neural classifiers,” Proceedings of the 8th International
Conference on Artificial Neural Networks, Vol. 1, pp. 311-316, Springer-
Verlag, 1998.

[30] F. Rhee and Y. Lee, “Unsupervised feature selection using a fuzzy-genetic
algorithm,” Proceedings of the IEEE International Fuzzy Systems Conference,
Vol. 3, pp. 1266-1269, 1999.

[31] K. Matsui, Y. Suganami and Y. Kosugi, “Feature selection by genetic
algorithm for MRI segmentation,” Systems and Computers in Japan, Vol.
30, No. 7, pp. 69-78, Scripta technical, June 30, 1999.

[32] J. Quinlan and R. Rivest, “Inferring decision tree using the minimum
description length principle,” Information and Computation, Vol. 80, pp.
227-248, 1989.

[33] Q. Gao, M. Li and P. Vitanyi, “Applying MDL to learn best model
granularity,” Artificial Intelligence, Vol. 121, pp. 1-29, 2000.

[34] L. Novak, G. Owirka and C. Netishen, “Performance of a high-resolution
polarimetric SAR automatic target recognition system,” Lincoln Laboratory
Journal, Vol. 6, No. 1, pp. 11–24, Spring 1993.

[35] L. Novak, M. Burl and W. Irving, “Optimal polarimetric processing for
enhanced target detection,” IEEE Transactions on Aerospace and Electronic
Systems, Vol. 29, pp. 234-244, 1993.

[36] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-scale
feature selection,” Pattern Recognition Letters, Vol. 10, pp. 335-347,
November 1989.

[37] S. Halversen, “Calculating the orientation of a rectangular target in SAR
imagery,” Proceedings of the IEEE National Aerospace and Electronics
Conference, pp. 260-264, May 1992.

[38] M. Ebner and A. Zell, “Evolving a task specific image operator,”
Proceedings of the Evolutionary Image Analysis, Signal Processing and

 136

Telecommunications, First European Workshops, EvoIASP’99 and
EuroEcTel’99, Berlin, Germany, pp. 74-89, Springer-Verlag, 1999.

[39] Y. Lin and B. Bhanu, “Discovering operators and features for object
detection,” Proceedings of the 16th International Conference on Pattern
Recognition, Vol. 3, pp. 339-342, August 2002.

[40] K. Krawiec and B. Bhanu, “Visual learning by evolutionary feature
synthesis,” International Conference on Machine Learning, pp. 376-383,
2003.

[41] K. Krawiec and B. Bhanu, “Coevolution and linear genetic programming for
visual learning,” Genetic and Evolutionary Computation Conference, Part I.,
pp. 332-343, 2003.

[42] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press,
1999.

[43] W. Banzhaf, P. Nordin, R. Keller and F. Francone, Genetic Programming,
an Introduction on the Automatic Evolution of Computer Programs and its
Application, San Francisco, Morgan Kaufmann, 1998.

[44] B. Bhanu and K. Krawiec, “Coevolutionary construction of features for
transformation of representation in machine learning,” Proceedings of the
Workshop on Coevolution, Genetic and Evolutionary Computation
Conference, pp. 249-254, 2002.

[45] B. Draper, A. Hanson and E. Riseman, “Learning blackboard-based
scheduling algorithms for computer vision,” International Journal of
Pattern Recognition and Artificial Intelligence, Vol. 7, pp. 309-328, 1993.

[46] Intel® image processing library, Reference manual, Intel Corporation, 2000.

[47] Intel® image processing library, Reference manual, Intel Corporation, 2001.

[48] M. P. Johnson, “Evolving visual routines,” Master’s Thesis, Massachusetts
Institute of Technology, 1995.

[49] K. Krawiec, “Pairwise comparison of hypotheses in evolutionary learning,”
In: C. E. Brodley and A. Pohoreckyj Danyluk (Eds.), Proceedings of the
Eighteenth International Conference on Machine Learning, pp. 266-273,
2001.

[50] S. Luke, “ECJ Evolutionary Computation System,”
http://www.cs.umd.edu/projects/plus/ec/ecj/, 2002.

[51] M. A. Maloof, P. Langley, T. O. Binford, R. Nevatia and S. Sage,
“Improved rooftop detection in aerial images with machine learning,”
Machine Learning, Vol. 53, No. 1/2, 2003.

[52] C. J. Matheus, “A constructive induction framework,” Proceedings of the
Sixth International Workshop on Machine Learning, pp. 474-475, 1989.

 137

[53] J. Peng and B. Bhanu, “Closed-loop object recognition using reinforcement
learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 20, pp. 139-154, 1998.

[54] J. Peng and B. Bhanu, “Delayed reinforcement learning for adaptive image
segmentation and feature extraction,” IEEE Transactions on Systems, Man
and Cybernetics, Vol. 28, pp. 482-488, August 1998.

[55] R. Poli, “Genetic programming for image analysis,” Technical Report
CSRP-96-1, University of Birmingham, 1996.

[56] M. A. Potter and K. A. De Jong, “Cooperative coevolution: an architecture
for evolving coadapted subcomponents,” Evolutionary Computation, Vol. 8,
pp. 1-29, 2000.

[57] M. Rizki, M. Zmuda and L. Tamburino, “Evolving pattern recognition
systems,” Proceedings of the IEEE International Conference on
Evolutionary Computation, Vol. 6, pp. 594-609, 2002.

[58] T. Ross, S. Worell, V. Velten, J. Mossing and M. Bryant, “Standard SAR
ATR evaluation experiments using the MSTAR public release data set,”
SPIE Proceedings: Algorithms for Synthetic Aperture Radar Imagery V.,
Vol. 3370, pp. 566-573, Orlando, FL, 1998.

[59] J. Segen, “GEST: A learning computer vision system that recognizes hand
gestures,” In R.S. Michalski and G. Tecuci (Eds.), Machine learning, A
Multistrategy Approach, Vol. 4, pp. 621-634, Morgan Kaufmann, 1994.

[60] A. Teller and M. Veloso, “A controlled experiment: evolution for learning
difficult image classification,” Lecture Notes in Computer Science, Vol. 990,
pp. 165-185, 1995.

[61] R. P. Wiegand, W. C. Liles and K. A. De Jong, “An empirical analysis of
collaboration methods in cooperative coevolutionary algorithms,”
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pp. 1235-1242, Morgan Kaufmann, 2001.

[62] I. H. Witten and E. Frank, Data mining: Practical Machine Learning Tools
and Techniques with Java Implementations, Morgan Kaufmann, 1999.

[63] D. Wolpert and W. G. Macready, “No free lunch theorems for optimization”
IEEE Transactions on Evolutionary Computation, Vol. 1, pp. 67-82, 1997.

[64] B. Bhanu and G. Jones, “Increasing the discrimination of SAR recognition
models,” Optical Engineering, Vol. 12, pp. 3298–3306, 2002.

[65] L. Breiman, “Bagging predictors,” Machine Learning, Vol. 24, pp. 123–140,
1996.

 138

 139

[66] B. Draper, A. Hanson and E. Riseman, “Knowledge-directed vision:
control, learning and integration, Proceedings of the IEEE, Vol. 84, pp.
1625-1637, 1996.

[67] K. Krawiec, “On the use of pair wise comparison of hypotheses in
evolutionary learning applied to learning from visual examples,” In P.
Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition,
Lecture Notes in Artificial Intelligence, Vol. 2123, pp. 307-321, Springer-
Verlag, 2001.

[68] J. Platt, “Fast training of support vector machines using sequential minimal
optimization,” In B. Schölkopf, C. Burges and A. Smola, (Eds.), Advances
in Kernel Methods - Support Vector Learning, MIT Press, 1998.

[69] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, California, 1992.

[70] Y. Lin and B. Bhanu, “Learning composite features for object recognition,”
Genetic and Evolutionary Computation Conference, Part II, pp. 2227-2239,
2003.

	Chap1.2.FinalReport.pdf
	Learning Composite Features for Object Detection Using Genetic Programming
	Motivation
	Related Research
	Design Considerations

